
Magnetic Charges Stefan Ivanov

This note assumes you’re familiar with all the standard formulae for dipoles (field of a dipole, potential

energy of a dipole in an external field, force on a dipole in an external field). You can find these in

E4 from Kevin Zhou’s handouts, or in Griffiths’ Introduction to Electrodynamics, Chapter 5.

Consider the magnetic field that corresponds to a dipole moment of magnitude pm, expressed in

spherical polar coordinates:

B =
µ0pm
4πr3

(
2 cos θ r̂+ sin θ θ̂

)
, (1)

where the angle θ is measured from the direction of the dipole moment. Here “dipole” really only

means that the field scales as 1/r3. What gives rise to such fields is a different matter entirely. Of

course, we know from experiment that the physical origin of dipole fields is current loops. In particular,

the field due to a planar loop of area A carrying current I has the form from (1) at large distances r,

and in that case pm = IA.

However, consider how an outside observer perceives such a dipole field as long as they don’t

approach the source too closely. By moving around, they can figure out the magnitude of pm, but

they have zero information about the origin of this pm. They can’t know if it’s due to a current loop

or something else. And they shouldn’t really care either. The torques and forces due to the field in

(1) depend only on the dipole moment pm, not the machinery which gives rise to it.

We will see that working with current loops is rather unwieldy, so it would be very convenient to

find another configuration that produces the dipole field in (1). For this purpose, let us introduce an

object called a magnetic charge. A magnetic charge qm produces a radial magnetic field

B =
µ0qm
4πr2

r̂. (2)

In addition, if placed in an external field B0, this charge would feel a force F = qmB0. This is the same

as Coulomb’s law in electrostatics, but with µ0 in place of 1/ε0. Of course, magnetic charges have not

been observed in real life, but their existence would not be at odds with the laws of electrodynamics.

So we’re not doing anything illegal.

Take a pair of magnetic charges ±qm at a distance d from each other. We want to find the

total field they produce at large distances (r ≫ d). Since the field from a single magnetic charge is

analogous to that of an electric charge, the total field will be analogous to that of an electric dipole.

And if you know the formula for that, you can directly conclude that in our case

B =
µ0(qmd)

4πr3

(
2 cos θ r̂+ sin θ θ̂

)
, (3)

where θ is measured starting from the ray which originates at −qm and passes through +qm. Now

compare this with (1) and you can see that for an outside observer in a dipole field, the moment pm
might as well be due to a pair of magnetic charges, as long as their qm and d comply with qmd = pm.

This perspective can often simplify the problem at hand. Let’s have a look at an example.

Example 1. Solenoid and loop (EuPhO 2020, 1a). A closed circular loop of radius r con-

sists of an ideal battery of electromotive force E and a wire of resistance R. A long thin air-core

solenoid is aligned with the axis of the loop (z-axis). Its length is l ≫ r, its cross-sectional area

is A (
√
A ≪ r), and the number of turns is N . The solenoid is powered by a constant current

I provided by an ideal current source. The directions of the currents in the solenoid and in the

loop are the same (clockwise in the figure). Find the force F1 acting on the solenoid when its

head O1 is positioned at the loop’s centre O. What is the force F2 acting on the solenoid when

its tail O2 is located at the centre of the loop?
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Solution. The magnetic flux through the loop is constant, so there is no induced EMF. The

current through the loop is I ′ = E/R. This current in turn gives rise to a magnetic field

B =
µ0I

′r2

2(r2 + z2)3/2
ẑ

along the axis of the loop. The force F1 is due to the interaction of this field with the currents

in the solenoid. The standard way to find F1 is as follows. Assuming the solenoid is tightly

wound, we can treat it as a stack of N rings, each with an area A and current I. Since the

solenoid is thin (
√
A ≪ r), each ring behaves as a magnetic dipole with moment pm = IA in a

field B(z) directed along ẑ. The force on each dipole is then given by pm
dB
dz . The total force

F1 corresponds to the sum of these forces. We will need to integrate along the length of the

solenoid. This is doable, if a bit clunky.

Alternatively, here’s how to approach this with magnetic charges. The force on each dipole in

the solenoid depends only on the dipole moment, so it’s fair game to imagine our dipoles as

pairs of magnetic charges ±qm at a distance d as long qmd = IA. Each ring takes up a fraction

1/N of the total length of the solenoid, so we can ascribe a length l/N to each. We’ll choose

d = l/N for our magnetic charge pairs as well (implying qm = NIA/l). We could have picked

any d, but this choice in particular allows for a neat trick. The stack of rings is equivalent

to a chain of magnetic charges. When the distance between the charge pairs is equal to the

distance between the rings, the magnetic charges will overlap: the positive charge of a given

pair is exactly where the negative charge of the next pair is. In those regions there is effectively

no charge at all. The only places with no cancellation along the solenoid are the two ends.

Thus the whole solenoid behaves exactly like two magnetic charges ±qm at each end, at least

in terms of the fields it produces and how it’s affected by external fields. The total force on the

solenoid is then simply the sum of the force on −qm at the left end and the force on +qm at the

right end:

F1 = +qmB|z=0 − qmB|z=−l =
NIA

l

(
µ0I

′

2r
− µ0I

′r2

2(r2 + l2)3/2

)
ẑ ≈ µ0ENIA

2rRl
ẑ.

In the case of F2, the negative charge −qm is at the centre of the loop. Hence F2 = −F1.

If you’re familiar with magnetic charges, this part of the problem takes about 5 minutes. All

in all, not too bad for 5.5 points on EuPhO! Indeed, if you know your physics, you will get

gold on EuPhO, period. In contrast, your mark on IPhO depends just as much on your exam

technique.
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For extra practice, try your hand at IPhO 2022 1.A5 and IPhO 2012 1.C3. Keep in mind that

in the first problem you’re just looking for the field due to a chain of dipoles, and in the second one

you’re looking for the total force on a chain of dipoles due to another chain of dipoles.

Let’s explore another example. This is one of the most beloved Russian problems, and everyone

I show this to finds it astonishing. But who knows, you might find it trivial now!

Example 2. Magnetic cord (Russia 2019). A thin homogeneous flexible inextensible cord

of length l is made from a ferromagnetic material such that the magnetic moment of each small

piece is directed along the cord. One end of the cord is held at a distance l1 (l1 > l) from an

infinite straight wire carrying current I. The cord eventually reaches equilibrium. Find the

distance l0 between the ends of the cord in equilibrium, as well as the distance x between the

free end of the cord and the wire. Neglect gravity and the magnetic field of the cord itself.

Solution 1. The following solution doesn’t involve any tricks, but it requires some experience

with curvilinear coordinates. We will use cylindrical polar coordinates with the z-axis directed

along the wire. The magnetic field of the wire is B = µ0I
2πr ϕ̂. The cord has some uniform dipole

moment per unit length, which we will denote by β. The magnetic moment of a piece dl of the

cord will then be βdl. The potential energy of this piece in a local field B is then

dU = −βdl ·B = −β
(
(dr)r̂+ (rdϕ)ϕ̂+ (dz)ẑ

)
·
(
µ0I

2πr
ϕ̂

)
= −µ0βI

2π
(dϕ),

which is proportional to the angle dϕ that this piece subtends in a plane perpendicular to the

wirea. The total potenial energy is then

U = −µ0βI∆ϕ

2π
,

where ∆ϕ is the total subtended angle between the two ends of the cord (again, in a projection

perpendicular to the wire). In equilibrium the potential energy of the cord is minimised. So

the equilibrium configuration is such that ∆ϕ is maximised.

This is a geometry problem. We seek to maximise ∆ϕ in a plane per-

pendicular to the wire. Displacing the cord along the wire contributes

nothing to this, so it would just be a waste of length. The problem can

then be reduced to 2D. The free end of the cord can access all points in

space up to l away from the fixed end, which corresponds to a circle of

radius l centered at the fixed end. Think about the segment connecting

the wire and the free end of the cord. We want to pull it as far away

as possible from the segment connecting the wire and the fixed end.

We can keep pulling it away until this segment becomes tangent to the

circle of radius l. Remember, the free end is constrained to this circle,

so you cannot improve on this. We then conclude that the cord is taut,

l0 = l. The distance between the wire and the free end is x =
√

l21 − l2.

Solution 2. In essence, we want to understand how a string of magnetic dipoles will align

itself under an azimuthal external magnetic field. Each small piece of the cord can be treated
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as a pair of magnetic charges. Let us choose the distance between the charges to be the actual

length of the piece. The cord behaves as a superposition of magnetic charges, but these charges

will cancel everywhere inside the cord. There are only two charges ±qm left at the two ends of

the cord. The interaction between them can be ignored according to the problem statement.

The charge at the fixed end of the cord is, well, fixed, so we don’t need to account for it in

what follows.

Let’s now think about what happens to the charge qm at the free end of the cordb. The

only force acting on it is a magnetic force qmB from the wire. But the charge cannot be in

equilibrium under a single force. That is, unless the cord is taut. In that case there would also

be a tension force which can indeed balance the magnetic force. Therefore l0 = l.

The tension will be directed along the cord, and the magnetic force on qm is directed along the

local B. These need to be antiparallel. The magnetic field does not have a component along

the wire, and the same should be true for the tension, so this is a 2D problem. Finally, note

that the magnetic force on qm is perpendicular to the line connecting the wire and qm. Because

the two forces are antiparallel, the tension force at qm should also be perpendicular to this line.

The cord will then align itself as in the figure above, from which we find x =
√

l21 − l2. We

didn’t need to write down a single equation!

a There is actually a deeper reason why the distances r cancelled here. The field B is in fact precisely set up
so that this happens. For we know that

∮
B · dl is a constant (= µ0I), and there is no preferred azimuth ϕ

in the case of a straight wire, so we could have concluded that our integral should only depend on the total
subtended angle ∆ϕ without knowing the exact form of B.

b I opt for positive qm in keeping with the figure in the previous solution.

Last updated: 26th March 2025

Send comments and corrections to sivanov.mail@proton.me
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Problems

Figure 1

Problem 1. Solenoid and loop, again (Russia 2022). A super-

conducting ring of radius R and inductance L is placed coaxially to

a half-infinite solenoid of radius r ≪ R and n loops per unit length, such

that the end of the solenoid lies in the plane of the ring. Initially, there

is no current in the ring. The current in the solenoid is slowly increased

from 0 to I, and is then kept constant. The wires which supply cur-

rent to the solenoid are set up so that their magnetic fields and their

interactions with the rest of the system can be neglected.

(a) Points A and C lie in the plane of the ring, at a distance of r/3

and 3r from the axis, respectively. Find the x-components of the

magnetic field due to the solenoid BAx and BCx at these points.

The x-axis is directed as shown on Figure 1.

(b) Find the magnitude and the direction of the current in the ring Il.

(c) Find the magnitude and the direction of the magnetic interaction

force F on the solenoid due to the loop.

Hint. For an infinite solenoid, the magnetic field inside is homogeneous, purely axial, and equal to

B0 = µ0nI. The field outside the infinite solenoid is zero.

Solutions

1. See the official solution here. You’ll have to translate it from Russian. There are multiple techiques

that can be used to solve the problem. Be sure to read through the alternative solutions!
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