
2008 Bulgarian IPhO Team Selection Test – Solutions

Short Exam 1

Problem. A solid ball of mass m and radius a (moment of inertia I = 2
5
ma2) starts rolling

without slipping from the top of another fixed ball of radius b. Its initial velocity is negligible.
The acceleration due to gravity is g.

(a) Find the angle θ = θ0 at which the rolling ball will lose contact with the fixed ball.
The angle θ is measured between the upward direction and the segment connecting the
centres of the balls.

(b) Find the velocity of the centre of mass v of the rolling ball when it detaches.

(c) What coefficient of friction k would make the upper ball start slipping at an angle
θ = α < θ0?

Solution. (a) Let us find the dependence of the centre of mass velocity v on θ. Our ball rolls
without slipping, so the friction force at the point of contact with the other ball does not do
any work. Applying conservation of energy,

mv2

2
+

Iω2

2
= mg(a+ b)(1− cos θ),

and using v = ωa (no slipping), we find that v2 = 10
7
g(a+ b)(1− cos θ). Now we can determine

the normal force N(θ). There are three forces on the ball: gravity mg, friction f , and a normal
force N . Projecting these along the normal, we find

mg cos θ −N = man,

where an = v2/(a + b) is the normal acceleration of the centre of mass. After substituting for
v2, we get N =

(
17
7
cos θ − 10

7

)
mg. The ball loses contact with the surface when N = 0. Thus

cos θ0 =
10
17
, or θ0 ≈ 54◦.

(b) Plugging the value for θ back into the formula for v(θ), we get v =
√

10
17
g(a+ b).

(c) First, we need to find the friction force f(θ). Projecting forces along the tangent, we obtain

mg sin θ − f = maτ ,

where the tangential acceleration aτ of the centre of mass is related to the angular acceleration
of the ball ε by aτ = εa (no slipping). Taking torques about the centre of mass, we get fa = Iε.
Now, solving for f , we find f(θ) = 2

7
mg sin θ. For the ball to start slipping at θ = α, we need

f(α) = kN(α). Plugging in our formulae for f and N , we get

k =
2 sinα

17 cosα− 10
.

You would be well advised to verify that all the results behave appropriately in special cases.
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Theoretical Exam

Problem 1. A satellite of mass m moves in a circular orbit of radius r around a planet of mass
M . Because of a drag force of the form Fdr = Avn, the orbital radius decreases at a constant
rate

dr

dt
= D ≪ r

T
,

where T is the orbital period. The gravitational constant is γ.

(a) Find the number n.

(b) Determine D = f(γ,M,m,A).

Solution. Since gravity Fg =
γmM
r2

acts as a centripetal force of the form Fc =
mv2

r
, the orbital

velocity must be v =
√

γM
r
. The mechanical energy of the satellite is then

E =
mv2

2
− γmM

r
= −γmM

2r
.

Of course, this is in agreement with the general result for an elliptical orbit of semi-major axis
a, which is E = −γmM

2a
. The power of the drag force is

P = F · v = −Fv = −Avn+1.

Nonconservative forces act to change the mechanical energy, meaning that P = dE
dt
. Then

−Avn+1 =
γmM

2r2
dr

dt
=

γmM

2r2
D.

The equation above must always hold, and vn+1 ∝ r−(n+1)/2, so n = 3. Going back to that
equation,

−Aγ2M2 =
γmM

2
D ⇒ D =

2γMA

m
.

Problem 2. An incompressible fluid of viscosity η flows along a cylindrical pipe of length L
and radius R. The pressures at the two ends of the pipe are p1 and p2, respectively. The flow
is stationary.

(a) Find the flow velocity v(r) in terms of the distance from the axis of the pipe r.

(b) Find the volumetric flow rate through the pipe Q.

Solution. (a) The problem is symmetric with respect to θ and z, and the velocity v depends
only on r. In other words, the velocity gradient is along r only. The equation for the viscous
force acting on a piece of fluid is then greatly simplified. Choose a cylindrical piece of fluid
that extends from the axis to some distance r. Its area of contact with the outside fluid is
A = 2πrL. The outside fluid then acts on our piece with a force Fd = η(2πrL)dv

dr
. Our piece

is also pushed forwards by a force Fp = (p1 − p2)πr
2 due to the pressure difference at the two

ends. The flow is stationary, so the two forces must balance. This yields

−(p1 − p2)

2ηL
rdr = dv.

This holds throughout r ∈ [0, R]. Using that v = 0 at the pipe’s boundary, integrate it as
follows:

−(p1 − p2)

2ηL

∫ R

r

rdr =

∫ 0

v

dv,
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v(r) =
(p1 − p2)

4Lη
(R2 − r2) .

(b) The total volumetric flow rate can be found by integrating the flow rates for all cylindrical
rings between r = 0 and r = R.

Q =

∫
vdS =

∫ R

0

2πrv(r)dr =
π(p1 − p2)

2ηL

∫ R

0

(rR2 − r3)dr =
πR4(p1 − p2)

8ηL
.

This dependence is known as Poiseuille’s law.

Problem 3. A ball of mass M has velocity v0. It strikes a ball of mass m (M > m) at
rest. The collision is elastic. The angle between the velocity vectors of M before and after the
collision is α.

(a) Find the maximum value of α.

(b) Find the velocities uM and um of the two balls after the collison in the case where
maximum α is realised.

Solution. (a) Consider the collision in the reference frame of the centre of mass (CM). The
CM’s velocity with respect to the lab frame is

vCM =
Mv0

m+M
.

The velocities of the two balls in the CM frame are then

vM = v0 − vCM =
mv0

m+M
and vm = 0− vCM = − Mv0

m+M
.

Let us examine the momenta of the balls in the CM frame before the collision (pM, pm) and
after the collision (p′

M, p′
m). The collision is elastic in this frame as well (it is impossible to

release heat in some reference frames but not in others). This leads us to the set of equations

pM + pm = p′
M + p′

m = 0,

|pM|2

2M
+

|pm|2

2m
=

|p′
M|2

2M
+

|pm|2

2m
.

We can see that these equations can hold only when |pM| = |p′
M| and |pm| = |p′

m| (with no
other constraints). In other words, in the CM frame the velocities after the collision have the
same magnitudes as before. The new velocity vector of M in the CM frame v′

M can point in
any direction. So, if we fix one end of this vector, the other end is constrained to a circle.

To get us back to the new velocity vector of M in the lab frame uM, we need to add vCM:

uM = v′
M + vCM.
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From the diagram we see that the deviation of uM from v0 is largest when the vector uM ends
up tangent to the circle of v′

M. In that case,

sinα =
mv0

m+M

/
Mv0

m+M
= m/M .

Then α = arcsin (m/M).

(b) When α is largest, the velocities are related by |uM|2 + |v′
M|2 = |vCM|2. This gives us

uM =

√
M −m

M +m
v0 .

To find um, we will use um = v′
m +vCM. The vector v′

m makes an angle π
2
−α with the x-axis

and has the same magnitude as vCM. Using the law of cosines, we find

|um| =
√

2(1 + sinα) |vCM| ⇒ um =

√
2M

m+M
v0 .
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Experimental Exam

Problem 1. Diode and paperclip circuit.

Equipment:
Circuit consisting of two identical diodes and a paperclip (the diodes are connected in parallel
and the paperclip is in series with one of the diodes), rectifier which can supply either constant
voltage or constant current, two multimeters, resistor substitution box (current not to exceed
100mA), wires, screwdriver, graph paper.

Task 1. Finding the resistance of the paperclip R.
In this part of the problem you will measure the I-V curve of the circuit (without using the
substitution box) for both positive and negative (i.e. with reversed polarity) voltages.

Note: Do not exceed a current of 2.5A.

(a) Sketch the circuit that you have assembled.

(b) Write down the ranges that you use for the multimeters.

(c) Describe how R can be calculated from your measurements.

(d) How will you use the rectifier – to supply a constant voltage or a to supply a constant
current?

Note: The characteristics of the diodes have a strong dependence on temperature.

(e) Quickly measure the I-V curve of the circuit as the voltage/current is raised. After
you have reached the maximum voltage/current, wait until the open diode reaches its
equilibrium temperature (be careful not to burn yourself on one of the diodes). Then,
quickly measure the I-V curve of the circuit as the voltage/current is lowered. Repeat
this for voltages of the opposite polarity. Present your results in a table.

(f) Write down whether a diode is open when a positive potential is applied on the terminal
with the white band, or vice versa.

(g) Decide on the dataset that you will use for determining R. Choose between the values
taken when raising the current/voltage and those taken when lowering the current/voltage.

(h) Plot a graph from which you can find R.

(i) Find R from the graph.

(j) Using the graph, find your error ∆R.

Task 2. Finding the reverse-bias saturation current of the diodes IS.
The current IS is the maximum current through a closed diode. The I-V curve of a diode can
be modelled by the Shockley diode equation,

I = IS

(
e

eU
nkT − 1

)
,

where e is the charge of the electron, k is the Boltzmann constant, T is the absolute temperature,
and n is a number close to 1.

(a) Find an approximation of the formula above which can be used when measuring the
forward I-V curve for voltages on the order of a few hundred mV at room temperature.

(b) Apply a voltage of such polarity that the diode with no paperclip attached to it is open.
Measure an appropriate part of the I-V curve for currents under 100mA. Use the resistor
substitution box if necessary. Present your results in a table.
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(c) Plot your data in appropriate variables.

(d) Using the plot, find IS and n.

Call the examiner if you suspect that a multimeter’s fuse has blown, or in case of any other
technical difficulties.
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