
2015 Bulgarian IPhO Team Selection Test – Solutions

Short Exam 2

Problem. Efficiency of a circuit. Consider the circuit on Figure 1. The voltage source,
the ammeters, and the voltmeter are ideal. The resistances R1 and R2 are constant, while the
resistance Rx may vary between zero and infinity. The efficiency of the circuit η is defined as
the ratio of the power dissipated at Rx to the total power dissipated in the circuit.

(a) Find an expression for η in terms of R1, R2, and Rx. (2.5 pt)

(b) Find the value of Rx which maximizes η, in terms of R1 and R2. (1.5 pt)

(c) Find an expression for the maximum η in terms of the ratio k = R2/R1. (0.5 pt)

(d) Find the value of η (in percent) for k = 1. (0.5 pt)

Figure 1

Solution. (a) Firstly, let’s note that there will be no power dissipation at the ammeters and
voltmeters because their resistances are zero and infinity, respectively. Now, using the notation
on the diagram, the power at Rx is UxIx, while the power for the whole circuit equals the power
supplied by the battery, which is EI1. Then we have η = UxIx

EI1
, and all that is left is to find how

the currents and voltages are related. The current I1 will split into Ix and I2 = I1 − Ix, such
that IxRx = I2R2. It follows that Ix = I1R2

Rx+R2
, which brings us to η = R2

Rx+R2

Ux

E
. The equivalent

resistance of R2 and Rx is Req =
R2Rx

R2+Rx
. The voltage drop at Req is Ux = EReq

R1+Req
, and thus

η =
R2

Rx +R2

· Req

R1 +Req

=
R2

2Rx

(R2 +Rx)(R1R2 +R1Rx +R2Rx)
.

(b) The efficiency η is maximised when its inverse 1/η is minimised. Equivalently, we want to
maximise (

R2

Rx

+ 1

)
(Rx(R1 +R2) +R1R2) .

The part of this expression that depends on Rx is(
R2

Rx

)
R1R2 +Rx(R1 +R2).

Now we can either take the derivative or use the AM-GM inequality to find that the expression
is minimised when the two terms are equal, which happens at

Rx =

√
R1

R1 +R2

R2.
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(c) We substitute R1 = R2

k
and Rx = R2√

1+k
into the expression for η. After some tedious

manipulations, we get

η =
k

2
√
1 + k + (2 + k)

.

(d) The answer is

η =
1

3 + 2
√
2
= 17.2%.

If you have time, it’s a good idea to solve the special case k = 1 separately and confirm that
the numerical answer is in agreement with the general formula.

Theoretical Exam

Problem 4. Alloy density. Gold-copper alloys AuxCu1−x (of number fraction x) have a
face-centred cubic lattice, as shown on Figure 2. The atoms of copper and gold are randomly
distributed on the lattice points. The density of pure gold is ρAu = 19.30 g/cm3, its lattice
constant is aAu = 4.078 Å , while the density of pure copper is ρCu = 8.96 g/cm3 and its lattice
constant is aCu = 3.615 Å. Assume that the lattice constant is proportional to x. Let y be the
mass fraction of the alloys AuxCu1−x, such that y = mAu

mCu+mAu
.

1. Find the number fraction in terms of the mass fraction, x = f(y). (1.0 pt)

2. Find the density in terms of the mass fraction, ρAuxCu1−x = f(y). (1.0 pt)

3. Find the density of a gold-copper alloy for mass fractions y = 0.5 and y = 0.8. (1.0 pt)

Figure 2

Solution. (a) Each unit cell is a cube of side a. Within the cell, there are 8 atoms at the
vertices which are shared between 8 cubes each, and there are 6 atoms at the faces which are
shared between 2 cubes each. In total there are 8 · 1

8
+6 · 1

2
= 4 atoms per unit cell. This means

that ρAua
3
Au = 4MAu and ρCua

3
Cu = 4MCu, where MAu and MCu are the masses of a single gold

or copper atom.

The mass fraction can be found by comparing the total masses of each element:

y =
mAu

mCu +mAu

=
MAux

MAux+MCu(1− x)
.

We rearrange this to get x in terms of y:

x =
MCuy

MCuy +MAu(1− y)
=

y

y + MAu

MCu
(1− y)

=
y

y +
(

ρAua
3
Au

ρCua
3
Cu

)
(1− y)

.
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(b) The lattice constant a is proportional to x, and we know that a = aCu at x = 0 (no gold)
and a = aAu at x = 1 (no copper). The formula for a in terms of x should then be

a = aCu + (aAu − aCu)x.

The density can be found as the mass of the atoms in a cell, divided by the volume of a cell.
The total mass of the atoms is equal to that of just the gold atoms, divided by y:

ρ =
Mcell

a3
=

Mcell(Au)

a3

(
1

y

)
.

As discussed above, 4 sites with gold atoms would have a total mass of ρAua
3
Au. However, only

a fraction x of the sites are actually occupied by gold atoms, so

ρ =
ρAua

3
Au

a3

(
x

y

)
=

ρAua
3
Au

(aCu + (aAu − aCu)x)3

(
x

y

)
= ρAu

(
aCu

aAu

+

(
1− aCu

aAu

)
x

)−3(
x

y

)
.

We’re still not done, because the expression should be in terms of y only. Using our result in
(a), we can reach

ρ = ρAu

(
y +

(
ρAua

3
Au

ρCua3Cu

)
(1− y)

)−1
(
aCu

aAu

+

(
1− aCu

aAu

)(
1 +

ρAua
3
Au

ρCua3Cu

· 1− y

y

)−1
)−3

.

This is awful, and it is essential to do a safety check. The expression should reduce to ρCu for
y = 0 and ρAu for y = 1. And indeed, it does.

(c) To prepare for the calculation, you should first write down aCu

aAu
= 0.887 and

ρAua
3
Au

ρCua
3
Cu

= 3.092.

It is safer to compute this in chunks rather than in one go. Commit the intermediate values
to paper in case you slip up with the calculator. The answers for y = 0.5 and y = 0.8 are

ρ = 12.34 g/cm3 and ρ = 15.84 g/cm3 , respectively.

Problem 5. A microscopic model for resistance. The simplest microscopic model for
resistance assumes that the free electrons in metals are accelerated from rest by the external
electric field for time τ , after which they collide with the ionic lattice. This τ is called the mean
free time. After colliding with the lattice, the electrons lose all of their velocity. Then they
begin accelerating again.

(a) The electron number density in a metal is n and its resistivity is ρ. Express τ in terms
of these parameters. (1.0 pt)

(b) Find the ratio P/∆Ekin

∆t
between the power P dissipated in a conductor of length l and

cross section S, and the kinetic energy ∆Ekin

∆t
lost by the electrons (as heat) per unit

time. (1.0 pt)

(c) Find the mean free time for the electrons in aluminium. Aluminium ions have charge
q = +3e. The atomic mass of aluminium is A = 27.0, its density is µ = 2.70 g/cm3, and
its resistivity is ρ = 28.2× 10−9Ωm. (1.0 pt)

Solution. (a) The time-averaged current in a conductor of cross section S due to electrons
of mean velocity is given by ⟨v⟩ is ⟨I⟩ = neS⟨v⟩, which can be seen by tracking the number
of charge carriers passing through an area S. The time-averaged current density will then be
⟨j⟩ = ne⟨v⟩. Let’s denote the electric field in the conductor by E. Now, each free electron
moves with a uniform acceleration a = eE

me
for time τ until it collides with the lattice. This
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means that it covers a distance s = aτ2

2
in time τ , which corresponds to a mean velocity of

⟨v⟩ = s
τ
= aτ

2
. The current density is then

⟨j⟩ = neaτ

2
=

ne2Eτ

2me

.

Conversely, Ohm’s law gives us ⟨j⟩ = E
ρ
. We match the two expressions to find

τ =
2me

ne2ρ
.

(b) The standard way to calculate the power is

P = I2R = I2
(
ρl

S

)
= ⟨j⟩2ρ(Sl).

Meanwhile, on a small scale, each electron loses energy me(aτ)2

2
per time τ , so the total energy

loss rate in a conductor of volume V = Sl is

∆Ekin

∆t
= n(Sl)

mea
2τ

2
.

The ratio we are looking for is

P

/(
∆Ekin

∆t

)
=

2ρ⟨j⟩2

nmea2τ
=

2ρE2

ρ2nme

(
e2E2

m2
e

)(
2me

ne2ρ

) = 1.

(c) The mass of a single aluminium atom is Au, so the number density of the atoms is µ
Au

.

There are three free electrons per atom, so the electron number density is n = 3µ
Au

. Then

τ =
2Aume

3µe2ρ
= 1.4× 10−14 s.

Problem 6. Charged disc in a magnetic field. A uniform dielectric disc of mass m and
charge q is initially at rest. The disc is placed in a magnetic field parallel to its axis. The field
is arbitrary, B = B(t), with B(0) = 0. Find the time dependence of the angular velocity of the
disc ω(t).

Solution. Denote the radius of the disc by R and its charge density by σ = q
πR2 . In keeping

with the symmetry of the problem, consider a circular loop of radius r < R. This loop is pierced
by a magnetic flux Φ = Bπr2. The magnetic field is always changing, so by Faraday’s law we
have an electric field E along the loop:

E(r) · 2πr = −dΦ

dt
= −dB

dt
πr2.

A surface element at r which carries a charge dq will then feel a force E dq, which creates a
torque Er dq about the rotation axis. The net torque from the ring between r and r + dr is

dM = Er(2πrσ dr) = −dB

dt

(
πr2

2πr

)
r (2πrσ dr).

The total torque from the whole disc is

M =

∫
dM = −dB

dt
σ

(
πR4

4

)
= −dB

dt

(
qR2

4

)
.
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This is equal to I dω
dt
, where I = 1

2
mR2 is the moment of inertia of the disc. The radius cancels

out, and we’re left with

dω = −dB
q

2m
.

The initial angular velocity and the initial magnetic field are both zero, so the final answer is

ω(t) = −qB(t)

2m
.

The minus sign implies that the angular velocity is directed opposite to the magnetic field.
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Experimental Exam

Problem 1. Efficiency of a circuit.

Equipment:
DC voltage source (rectifier), 3 multimeters, resistor substitution box Rx, two resistors R1 and
R2 in series, 8 wires, graph paper. See Figure 3.

Figure 3

Let us define the efficiency of the circuit on Figure 4 as the ratio of the power dissipated to the
right of the voltmeter (i.e. at the resistor Rx and the ammeter Ix) to the total power dissipated
in the circuit. The aim of this problem is to study the dependence of η on the load Rx (which
will be calculated as Rx = Ux/Ix). This will be used to find the optimal value Rx,opt which
maximises η (accurate to 5Ω), as well as the maximum η itself.

Figure 4

(a) Using a multimeter in ohmmeter mode, measure the resistances R1 and R2 and record
them in a table. Turn on the voltage source in DC mode and set the voltage to E =
2.00V. Leave the source on and do not change the voltage from now on. (1.0 pt)

(b) Assemble the circuit. Before connecting it to the voltage source, ask the examiner to
confirm. (3.0 pt)
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(c) Assume that the dependence η(Rx) has a single maximum. Choose appropriate values
for Rx in the range (0.1Rx – 10Rx). Take the necessary measurements and tabulate the
dependence for this range. In the table you should record both the nominal resistance
of the substitution box and its measured value Rx = Ux/Ix. (5.0 pt)

(d) Plot a graph of η(Rx). (2.0 pt)

(e) If your experimental data is insufficient, take additional measurements. If the scale of
your graph was unsuitable, plot an additional graph which covers only the important
features of the dependence. Write down your values for Rx,opt and η(Rx,opt). (4.0 pt)

Call the examiner in case of any technical difficulties.
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