
2019 Bulgarian IPhO Team Selection Test – Solutions

Short Exam 1

Problem. Linear crystal. A large number of balls (atoms) of mass m are positioned on a
line at a distance a from each other. Adjacent balls are connected by identical springs of
constant k. The balls are indexed with numbers n = 0, 1, 2, . . . , where n = 0 corresponds to
the ball at the left end of the chain (see Figure 1). The leftmost ball oscillates longitudinally
with an amplitude A (A ≪ a), as given by

x0 = A sin (ωt),

where x0 is the displacement from its equilibrium position. As a result, a longitudinal wave
of wavelength λ propagates to the right. In what follows, you may use the magnitude of the
wavevector q = 2π

λ
instead of the wavelength λ.

Figure 1

(a) Find an expression for the displacement xn of the n-th ball (n > 0) as a function of
time.

(b) By considering the motion of the n-th ball (n > 0), find the dependence ω(λ) (or ω(q))
of the wave’s angular frequency on the wavelength λ (or the wavevector q).

(c) Acoustic waves have a wavelength much larger than the atomic distance, i.e. λ ≫ a.
The speed of sound in a crystal is essentially independent of the sound’s frequency. Find
an expression for the speed of the acoustic waves in the chain in terms of k, m, and a.

(d) The power of an acoustic wave is defined as the mean energy carried by the wave per
unit time. Find an expression for the power of an acoustic wave P in terms of its angular
frequency ω, its amplitude A, as well as the parameters k, m, and a.

Hint: You may use that

sinα + sin β = 2 sin

(
α + β

2

)
cos

(
α− β

2

)
.

Solution. (a) We are told that the motion of the balls conforms to a wavelike solution. We
will proceed to guess an equation for this wave, and later we will find its exact parameters in
order for it to actually work. We expect the wave to be harmonic (sinusoidal), because that is
how the first ball moves. Mathematically, any wave propagating to the right is represented by
a function where the time dependence of the oscillating variable x(t) comes grouped together
with the position r, or x = f(vt − r), where after a quick think you can see that v may be
interpreted as the velocity of propagation. In the case of harmonic waves, the exact form of
the function is

x(t) = A sin (ωt− qr),

where A is the amplitude, i.e. the maximum value of x. Note that v = ω/q, but we write
(ωt− qr) rather than q(vt− r) simply because the quantities ω and q have neat interpretations.
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If T is the period of the wave and λ is its wavelength, then ω = 2π/T and q = 2π/λ. This is
evident from the definitions of a period or a wavelength. One period is the time after which
the pattern of the wave repeats at a fixed position r. So, x(t) should be the same whether you
sit at t or t + T . This implies ωT = 2π. Similarly, one wavelength is the distance after which
the pattern repeats if you freeze time. Hence, x(r) is the same at r and r + λ, which yields
kλ = 2π.

But let’s return to our problem. We intentionally chose the form A sin (ωt− qr) rather than
something like A sin (qr − ωt) or A cos (ωt− qr) because we wanted to match x0 = A sin(ωt)
at r = 0. For ball n we have r = na, so

xn = A sin (ωt− qna).

However, we still need to find the dependence ω(q), which will then tell us how the wave velocity
depends on the wavevector q.

(b) Every ball has a spring to the right, stretched by xn+1 − xn, and a spring to the left,
stretched by xn − xn−1. In total,

mẍn = k(xn+1 − xn)− k(xn − xn−1),

Now we plug in our guess for xn. It will satisfy the force equation only for a specific form of ω:

−
(
mω2

k

)
sin (ωt− qna) = sin (ωt− qna+ qa) + sin (ωt− qna− qa)− 2 sin (ωt− qna),

−
(
mω2

k

)
sin (ωt− qna) = 2 sin (ωt− qna) cos (qa)− 2 sin (ωt− qna),

mω2

k
= 4

(
1− cos (qa)

2

)
⇒ ω(q) = 2

√
k

m
sin
(qa
2

)
.

We can also write this in terms of the wavelength:

ω(λ) = 2

√
k

m
sin
(πa
λ

)
.

(c) At the limit λ ≫ a we can use sinx ≈ x, and then

ω(q) =

(
a

√
k

m

)
q.

Therefore the acoustic waves have speed

v = a

√
k

m
.

Indeed, this doesn’t depend on ω or q.

(d) We’ll solve this in two ways. The first approach is to find the energy stored in the system
within a length a. We need to consider one ball and one spring. The ball has an average kinetic
energy

⟨Ekin⟩ =
m⟨v2n⟩

2
=

m(ωA)2

2
⟨cos2 (ωt− qna)⟩ = mω2A2

4
,
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while the spring has an average potential energy

⟨Epot⟩ =
k

2
⟨(xn+1 − xn)

2⟩ = kA2

2
⟨[sin (ωt− qna− qa)− sin (ωt− qna)]2⟩

=
kA2

2

〈[
2 sin

(qa
2

)
cos
(
ωt− qna− qa

2

)]2〉
=

kA2q2a2

4
=

mω2A2

4
.

The two terms are equal (as is usually the case with waves), and they add up to a total of
E = mω2A2

2
. Now note that the pulse we send along the system covers a length a in time t = a

v
.

The power is then

P =
E

t
=

1

2
ω2A2

√
km.

The second approach is more tricky. The point here is that the leftmost ball cannot oscillate
like this unless it is supported by some external force F . This force is associated with a power
input Fv0, and this nowhere to go except towards the energy of the propagating wave. Thus
P = ⟨Fv0⟩. To find F , we write

mẍ0 = F + k(x1 − x0).

After a bit of algebra, we get

F = −mω2A sin (ωt) + 2kA sin
(qa
2

)
cos
(
ωt− qa

2

)
.

We need to multiply this with
v0 = ωA cos (ωt)

and then take the time average. The first term in the expression for F promptly goes away,
while the second needs extra massaging:

P =

〈
2kωA2 sin

(qa
2

)
· 1
2

(
cos
(
2ωt− qa

2

)
+ cos

(qa
2

))〉
.

The term qa
2
is small, so our expression simplifies to

P =
1

2
kωA2qa =

1

2
ω2A2

√
km.

Short Exam 2

Problem. Conducting sphere. The centre of a neutral conducting sphere is collinear with
two point charges q and −q. The charges and the sphere are in vacuum. The distance between
the sphere and the charges is l, the radius of the sphere is r, and the distance between the
charges is d, such that l ≫ r and l ≫ d. Find a formula for the force F on the sphere due to
the charges.

Solution. This image charge problem is exactly the same as Example 4 in Kevin Zhou’s
Handout E2, so I’ll be quite brief in sketching a solution. We’ll look for the total force on the
charges due to the sphere, which is equivalent by Newton’s third law. The induced charges of
the sphere must arrange themselves in such a way so as to ensure a constant potential on the
sphere. To compensate for a single charge q that is l away from the centre of the sphere, the
induced charges must form a net field like that of a point charge −qr/l located at a distance
r2/l from the centre of the sphere along the axis of the outside charges. You can verify that this
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gives you zero potential everywhere on the sphere. But we’re not quite there yet. A surface
integral of the electric field right above the sphere has to equal zero because the conductor is
neutral. And one equivalent image charge corresponding to the induced charges is not enough
to satisfy this condition.

But if we also imagine a charge +qr/l at the centre of the sphere, this issue is resolved, and
the potential on the sphere is just shifted by a constant, which is allowed. So, the response of
the sphere to the pair of outside charges can be represented by four image charges: two for +q
at distance l and two for −q at distance l+ d (without loss of generality). At the centre of the
sphere there is net charge

qr

l
− qr

l + d
=

qrd

l2
=

pr

l2
,

where p is the dipole moment of the outside pair. Apart from that, we have −qr/l at r2/l and

+
qr

l + d
≈ +

qr

l

(
1− d

l

)
at

r2

l + d
≈ r2

l

(
1− d

l

)
.

Let’s split up this charge into +qr/l and −qdr/l2. The first piece is a distance r2d/l2 from
the charge −qr/l. Together they form a dipole of magnitude pr3/l3 which is collinear with the
outside dipole. As for the remaining piece −pr/l2, it will form a dipole together with the net
central charge. Its magnitude is also pr3/l3, and it is also collinear with the outside dipole.

We’ve thus found that the charges outside (a dipole p) will experience the field of a net induced
dipole with magnitude p′ = 2pr3/l3. The two dipoles are aligned, so we know to expect an
attractive force. On the z-axis pointing along the dipoles, the field of the induced dipole is
E = −2kp′/z3. The outside dipole then experiences a force

F = p
dE

dz
=

6kpp′

z4
=

12kp2r3

l3z4
=

3q2d2r3

πε0l7
.

Here we introduced z as a temporary variable that is independent of l. We needed this because
the formula for the force from a dipole comes only from considering the variation of its field
in space. We’re not really moving anything around, so the magnitude of the induced dipole
should stay constant.

Short Exam 3

Problem. Surface gravity waves. A monochromatic surface gravity wave propagates along
a channel of depth H and width l ≫ H. The wavelength of the wave greatly exceeds the width
of the channel. For such waves the relation between the angular frequency of the wave ω and
the wavenumber k = 2π

λ
is ω = uk, where u is the wave velocity. Here u is independent of k.

(a) Propose a form for the dependence of the wavenumber k on depth H for such waves.

(b) Consider the reflection and the transmission of such a wave at a point where the channel
suddenly changes depth from H1 to H2 = 4H1. Compare the amplitudes of the reflected
wave B and the transmitted wave C with that of the incident wave A.

(c) Find the reflection coefficient R =
(
B
A

)2
and the transmission coefficient T = k2

k1

(
C
A

)2
.

Verify that R + T = 1.

Solution. (a) Let’s take a peek at the next subpart. Any monochromatic wave can be
decomposed into sinusoidal building blocks, so it suffices to check what will happen to a
sinusoidal wave incident on a boundary at x = 0. Let the incident wave be described by
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yI = A sin (ωt− kx). After striking the boundary, it splits up into a reflected part yR =
B sin (ω1t+ k1x) and a transmitted part yT = C sin (ω2t− k2x). Here the plus sign corresponds
to reverse propagation. Now, at x = 0 we need to have yI = yR + yT at all times. This can
happen only when ω = ω1 = ω2. So, it seems that ω must stay constant.

Consider the equation ω = uk from the problem statement. Here, u can depend only on some
length scale L and the acceleration due to gravity g (this is because gravity acts as a restoring
force for water waves; see also the pointer in the title of the problem). Using dimensional
analysis, we find that u ∼

√
gL. Now we need to think about what L might be. It turns

out that it’s just the depth H. All other lengths are way larger, so they cannot influence the
small-scale behaviour of the wave. In contrast, for deep water (H ≫ λ) we’d have u ∼

√
gλ.

The quantities u and k yield a constant when multiplied, and u ∝
√
H. We conclude that

k ∝ 1/
√
H.

(b) We now know that k1 = k and k2 = k
√

H1/H2. But we still need B and C. Setting
yI = yR + yT at x = 0 gives us A = B + C. Since the transition at the boundary shouldn’t
have any kinks, the derivatives at x = 0 must also be continuous:

−kA = kB − k

√
H1

H2

C.

Solving the set of equations gives us

B

A
=

√
H1 −

√
H2√

H1 +
√
H2

= −1

3
,

C

A
=

2
√
H2√

H1 +
√
H2

=
4

3
.

(c) We compute

R =

(√
H1 −

√
H2√

H1 +
√
H2

)2

=
1

9
, T =

4
√
H1H2

(
√
H1 +

√
H2)2

=
8

9
.

These expressions evidently add up to 1.

Theoretical Exam

Problem 1. Unwinding a string. A string of length l is wound around a cylinder of mass
m and radius R, where l ≫ R. The cylinder is initially at rest on a horizontal plane along
which it can only roll without slipping. The free end of the string A is at the top of the cylinder.
A constant horizonal force F is applied at the free end of the string, and the cylinder starts
rolling (Figure 2).

(a) Find the acceleration of the centre of the cylinder a.

(b) Find the velocity of the centre of the cylinder v when the string is fully unwound.

Solution.

Problem 2. Spiral motion. A point of mass m moves under a central force. It begins its
motion at a distance r0 from the center of force. For some initial velocity of magnitude v0 the
particle moves along a spiral trajectory where the velocity vector maintains a constant angle θ
with the radius vector (Figure 3).
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(a) Find the equation of the trajectory in polar coordinates, i.e. find the dependence r(φ)
of the distance to the centre r on the angle of rotation of the radius vector φ. The
equation may include r0 and θ.

(b) Find an expression (up to a constant) for the potential energy W of the particle in terms
of the distance to the centre r.

Figure 2 Figure 3

Solution.

Problem 3. Hodograph. Let us draw the velocity vector V of a point mass on a diagram
with axes Vx and Vy which correspond to the components of the velocity. If the velocity of the
point mass varies, the end of the vector V will trace a curve called a hodograph (Figure 4).
The hodograph can be interpreted as the trajectory of the vector V in velocity space.

(a) Draw the hodograph for a body launched at an angle α to the horizon with an initial
velocity V0. Mark the points which correspond to the launch and to the landing. Mark
the point that corresponds to maximum height.

(b) Consider a simple string pendulum of length l with no friction at the pivot. The
pendulum is initially at an angle of 90◦ to the vertical (Figure 5). The pendulum is
then let go from rest. Draw the hodograph for the velocity of the bob qualitatively.
Mark the points which correspond to maximum angular displacement. Mark the points
which correspond to the pendulum’s equilibrium position. Calculate the coordinates of
the extrema of the hodograph. Annotate your diagram with your results.

Figure 4 Figure 5

Solution.
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Problem 4. The Wien constant. For a black body of temperature T , the spectral radiance
in frequency r(ν, T ) (the energy emitted in a unit frequency interval per unit emitter area per
target solid angle per unit time, W

Hz·m2·sr) is given by

r(ν, T ) =
2h

c2
ν3

ehν/kT − 1
.

(a) Derive a formula for the spectral radiance in wavelength r′(λ, T ) (the energy emitted
in a unit wavelength interval per unit emitter area per target solid angle per unit time,
W

m3·sr).

(b) Express the Wien constant b (from Wien’s displacement law λmaxT = b) in terms of the
Planck constant h, the Boltzmann constant k, the speed of light c, and some unknown
number A.

(c) Calculate the number A, rounded to five significant figures. Calculate the Wien constant,
rounded to five significant figures.

Solution.

Problem 5. Prism. The cross section of a prism with refractive index n is an isosceles
trapezium. The angle between its larger base and its legs is θ, its height is h, and the length
of the larger base is s. Consider a ray of light (lying in the plane of the cross-section) which is
incident on one of the legs of the prism, at an angle α with respect to its normal. The ray is
reflected by one of the bases and leaves the prism at the other leg. The prism is surrounded by
air of refractive index unity.

(a) Derive a formula for the deviation angle φ of the ray due to the prism (that is, the angle
between the incident ray and the outgoing ray).

(b) Assume that the incident ray is parallel to the bases. The ray strikes the prism at a
distance x above the larger base. There exist ratios s/h for which the outgoing ray is
also parallel to the bases for all x ∈ (0, h).Find a formula for the smallest such ratio.

(c) Calculate the ratio s/h (as a decimal) for θ = 60.0◦ and n = 1.500.

(d) Consider a prism with this ratio. You are looking at the Cyrillic letter Б through the
legs. Draw what you will see.

Solution.

Problem 6. Magnet. Assume the simplest possible model for the Earth’s magnetic field: the
source is located at the centre of the Earth, and its size is negligible compared to the radius of
the Earth.

(a) Find the ratio of the magnetic fields at the magnetic poles and the magnetic equator.

(b) Find the angle which the magnetic field in Sofia (latitude 42.7◦) makes with the horizon.

Solution.

Problem 7. Photocathode. Compare the maximum velocities v1,max and v2,max of the
photoelectrons for silver (work function A = 4.7 eV) in the following cases:

1. The photocathode is irradiated with ultraviolet light of wavelength λ1 = 155 nm.
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2. The photocathode is irradiated with gamma rays of wavelength λ2 = 2.47× 10−3 nm.

Solution.

Problem 8. Hydrogen. A hydrogen atom at rest emits a photon in a transition from the
first excited state to the ground state. What is the difference (in percent) between the energy
of the emitted photon and the energy of the transition?

Solution.

Problem 9. Accelerator. A particle accelerator works with particles of rest mass m0. For
what kinetic energies should the accelerator be designed if it is to be used for probing structures
of size l? Make numerical estimates for electrons and protons, with l = 10−15m (the length
scale of atomic nuclei).

Solution.

Problem 10. Helium.

(a) A vessel is filled with helium at temperature T = 300K. A hole of size S = 1mm2 is
cut in the vessel. What should the pressure in the vessel be so that the gas flows out
from the hole at a rate of ω = 1g/h? Assume that the vessel is in vacuum and that the
pressure inside does not change significantly.

(b) A disc of radius r = 1 cm moves along its axis in a medium filled with helium at
temperature T = 300K and pressure p = 1kPa. Find the drag force acting on the disc.

Solution.
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Experimental Exam

Problem 1. Separation of magnets.

Equipment:

1. Two identical neodymium magnets of size 15mm× 10mm× 5mm and mass 5.6 g. They
are magnetised parallel to their shortest edge.

2. Two identical plastic rails with an L-shaped cross section. The length of the rails is
L = 1.000m and their thickness is d = 3.0mm.

3. Spring scale with a range of 5N and an adjustable zero. The scale can measure both
tension and compression forces.

4. Plastic tape measure, accurate to 1mm.

5. Stopwatch.

6. Ball of plasticine.

7. Two sheets of graph paper (you will not be given extra sheets).

8. Blank paper (you can ask for extra sheets).

Figure 6 shows two magnets in the shape of rectangular cuboids with edges a, b, and c. They
are magnetised in the direction of edge c, i.e. their poles are on the parallel faces ab. If the
magnets are placed with their unlike poles together, for small distances d between the poles
the attractive force between the magnets is given by

F (d) = F0e
−kd, (1)

where k is a constant which depends on the size of the magnets and F0 is the so called breakaway
force. This is the minimum force necessary to separate the magnets when their poles touch.
The principal aim of this problem is to find the breakaway force for two neodymium magnets
without a tool that can measure this force directly.

Figure 6

Tasks:

Design an experiment and determine:

(a) The coefficient of friction µ between the magnets and the plastic rail.

(b) The breakaway force F0 between the two magnets.
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Depending on your methods, you may not need some of the equipment. You can find the
two parameters in any order. Your mark will depend on the explanation of your methods, the
tabular and the graphical presentation of your data, your final values, and their error estimates.

Note: Do not load the spring scale when not working with it. Do not apply forces beyond the
range of the spring scale. You may need to adjust the zero of the spring scale. If you damage
the spring scale through your fault, you will not be given a spare.

Problem 2. AC circuits.

Equipment:
Unknown resistance R, unknown capacitance C, unknown inductance L (these are inside a box,
each between neighouring terminals, respectively 1-2, 2-3, or 3-4, see Figure 7), multimeter (with
instructions), alternating voltage source (with instructions), wires, ruler, graph paper.

Record all measurements in tables. Write down your results in the answer sheet.

Figure 7

Task 1. Determining the positions of the components.
Using only the multimeter, find out the positions of the resistor, the capacitor, and the inductor.
Record your answers on the answer sheet. (1.0 pt)

Task 2. RC circuit measurements.
Set the alternating voltage source (the generator) to sine wave mode. Set the amplitude to
maximum using the ‘AMPL’ potentiometer. Use the ‘OUTPUT’ terminal. The display will
show the frequency ν = 1

T
of the output voltage. Use the multimeter’s needle probles for faster

measurements.

Notes:

1. The multimeter’s output voltage is not constant. Its amplitude may vary depending on
the load.

2. The multimeter measures alternating voltages accurately only in the range (40Hz –
400Hz). However, you can also use it for measuring much higher frequencies. Assume
that the measured voltage Umeas is related to the true value U by Umeas = k(ν)U , where
k(ν) is some slowly decreasing function of the frequency ν.

3. In addition to the alternating voltage, there may be a constant voltage at the ‘OUTPUT’
terminal. Adjust the ‘DC OFFSET’ knob so as to minimise it. You can measure the
output with the multimeter in DC voltage mode.

(a) Measure the resistance R. (0.5 pt)
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(b) Assemble a circuit with R and C in series. Measure the dependence of the voltages UR

(across the resistor) and UZ (across the RC circuit) on frequency. Work in the range
(80Hz – 800Hz). Always measure UR and UZ in pairs at the same frequencies. Record
your results in a table. (2.0 pt)

(c) Using appropriate variables, plot a linearised graph from which C can be calculated.

The impedance of the RC circuit is Z =
√

R2 + 1
(ωC)2

, where ω = 2πν is the angular

frequency. (2.0 pt)

(d) Using the graph, find the capacitance C. (1.0 pt)

Task 3. RLC circuit measurements.

(a) Assemble a circuit where C and L are in parallel, and this pair is in series with the

resistance R. The impedance of such an RLC circuit is Z =
√

R2 +
(

ωL
1−ω2LC

)2
, with

ω = 2πν. This circuit exhibits resonance properties. Study the range (2 kHz – 20 kHz)
and determine the resonant frequency νres with an accuracy of 100Hz. (1.5 pt)

(b) Using the data obtained so far, find the value of L. (1.0 pt)

(c) Measure the dependence of the voltages UR (across the resistor) and UZ (across the
RLC circuit) on frequency. Work in an appropriate range around νres. Always measure
UR and UZ in pairs at the same frequencies. Record your results in a table. (2.0 pt)

(d) Using appropriate variables, plot a linearised graph. (2.0 pt)

(e) Using the graph, recalculate the resonant frequency νres, the capacitance C, and the
inductance L. (2.0 pt)

Call the examiner in case of any technical difficulties.
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