
2021 Bulgarian IPhO Team Selection Test – Solutions

Short Exam 1

Problem. Spider web. Consider a hexagonal spider web. It has six radial threads, each of
relaxed length l0 = 45 cm, radius r = 0.01mm, and Young modulus E = 2×108 Pa. The threads
are given tension F0 = 6mN after being attached to some nearby surface. Four concentric
hexagonal threads are woven around the radial threads equidistantly (Figure 1). These are
initially relaxed. Each of the threads breaks when its strain ε = ∆l/l reaches εmax = 0.2. The
spider web can be considered massless.

(a) A fly sticks to the centre of the web with velocity v = 2m/s perpendicular to the web.
What is the maximum mass Mmax of the fly so that the web does not break? (1.5 pt)

(b) A fly of mass m = 0.1 g sticks to the centre of the web. Find the period T of its small
oscillations perpendicular to the web. (1.5 pt)

(c) Consider the same web as before, but without tension in any of the threads. The web
is carefully taken off its supporting surfaces. It is then loaded at its outermost vertices
using six radial forces of equal magnitude. At what magnitude Fmax does the web break?
Where will it break? (2.0 pt)

Hint: An elastic material is loaded in some direction using force F . The cross section of
the material perpendicular to that direction is S. The relaxed length of the material in that
direction is l and its extension is ∆l. Hooke’s law states that

F

S
= E

∆l

l
,

where E is the Young modulus of the material.

Figure 1

Solution. (a) We’ll always assume that the strain on the web is relatively small, which will
help us avoid all sorts of complications (for example, stretching a cord will generally reduce its
cross-section, but we can just set r = const). The elastic energy stored in a thread of relaxed
length l0 is

U =

∫ l

l0

F dl =

∫ ε

0

Eπr2ε(l0 dε) =

(
Eε2

2

)
πr2l0.
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Initially the strain in each radial thread is ε0 = F0

πr2E
= 0.095. When the fly comes in, it

will stretch the radial threads until its velocity turns to zero. While this happens, the lateral
threads do not stretch – their motion is purely translational. In the limiting case, the radial
threads are on the verge of breaking right when the fly is at rest. We can then apply energy
conservation:

Mmaxv
2

2
+ 6

(
Eε20
2

)
πr2l0 = 6

(
Eε2max

2

)
πr2l0,

Mmax =
6πr2l0E

v2

(
ε2max −

(
F0

πr2E

)2
)

= 1.3 g.

(b) This is easier to solve with forces. At equilibrium, the radial threads are already taut with
force F0. A small displacement x of the fly from the equilibrium position doesn’t change the
tension much. The main effect is instead that the tension acquires a component against the
motion of the fly, equal to F0(

x
l
) = F0(

x
l0(1+ε0)

). This acts as a restoring force with an elastic

constant k = F0

l0(1+ε0)
. The oscillation period is thus

T = 2π

√
m

k
= 2π

√
ml0(1 + ε0)

F0

,

T = 2π

√
ml0
6F0

(
1 +

F0

πr2E

)
= 0.23 s.

(c) Since the web is loaded symmetrically, all radial threads must stretch identically and the
60◦ angles at the centre of the web will be preserved. This implies that all equilateral triangles
will stay equilateral. This places a constraint on how the lateral threads stretch.

The four segments of each radial thread will all stretch in a different manner. Counting inwards,
we’ll label their tensions with F1,2,3,4 and their strains with ε1,2,3,4. We do the same with the
lateral pieces, labelling the tensions as T1,2,3,4 and the strains as ε′1,2,3,4. Our goal is to find
expressions for all the strains, see which of those is largest, express it in terms of F , and then
set it to εmax = 0.2 to find F = Fmax. Let’s first write down the “legs = base” constraints on
the strains:

l0
4
(1 + ε4) =

l0
4
(1 + ε′4),

l0
4
(1 + ε4) +

l0
4
(1 + ε3) =

(
2 · l0

4

)
(1 + ε′3), · · ·

These simplify to

ε′4 = ε4, ε′3 =
ε3 + ε4

2
, ε′2 =

ε2 + ε3 + ε4
3

, ε′1 =
ε1 + ε2 + ε3 + ε4

4
.

Now we’ll do a force balance on each of the vertices that lie on a given radial thread. For the
outermost vertex, we have

F = 2T1 cos 60
◦ + F1 = T1 + F1.

Similarly,
F1 = T2 + F2, F2 = T3 + F3, F3 = T4 + F4.

For any force F , the strain can be found from F = (Eπr2)ε, and the conversion factor Eπr2 is
the same for all threads. Thus

F

Eπr2
= ε′1 + ε1, ε1 = ε′2 + ε2, ε2 = ε′3 + ε3, ε3 = ε′4 + ε4.
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At this point we notice that the largest strain is ε1, so the web will break at the outermost
quarter of the radial threads. Let us express everything in terms of ε′4:

ε′4 = ε4, ε3 = 2ε4, ε′3 =
3

2
ε4, ε2 =

7

2
ε4, ε′2 =

13

6
ε4, ε1 =

17

3
ε4, ε′1 =

73

24
ε4.

We’ve obtained that ε′1 =
73
136

ε1, and so F
Eπr2

= 209
136

ε1. Finally,

Fmax =
209

136
Eπr2εmax = 19mN.

Incidentally, note that we just solved a set of 16 equations with 16 variables!

Short Exam 2

Problem. Discharge. Even though air is an insulator, it has a finite resistivity that depends
on pressure, temperature, and humidity. This is why charged bodies in air gradually lose
their charge through currents directed towards other conductors, including the ground. In
this problem we study dry air under standard temperature and pressure. Its resistivity is
ρ = 1.0× 1014Ωm.

A metal ball with charge q = 1.0 nC is suspended in air at a height of h = 0.10m above the
ground. The ground can be considered as an infinite conducting plane.

(a) Find the maximum current density jmax (in A/m2) flowing through the ground.

(b) Find the total current I that flows through the ground.

(c) Find the time T1/2 taken for the ball to lose half of its initial charge.

The dielectric constant of air is ε = 1.

Solution. (a) We’ll use coordinates such that the ground is at z = 0 and the metall ball is at
(x, y, z) = (0, 0, h). The current density at a point with electric field E is be given by j = E/ρ,
So, our task boils down to finding E everywhere in the air (z > 0), and after that determining
the maximum electric field right above the ground (essentially at z = 0). Since the ground is
an infinite conducting plane, induced charges will pop up on the surface, and they will certainly
contribute to the field E above. We know that the superposition of the fields of all the charges
should give us a situation where the potential is zero at z = 0. This is because the solution for
E should comply with the fact that at z = 0 there’s a conductor, and those are equipotential
(setting this constant potential to zero is then a matter of convenience).

There’s a theorem which says that there is only one way this can happen in terms of charge
configurations. Luckily, it’s not that hard to spot it. If the induced charges at z = 0 arrange
themselves in such a way so that their total field replicates the field of an imaginary lone
charge −q at (0, 0,−h), then the job’s done, because everywhere on the plane we’ll have V =
(−kq/r) + (kq/r) = 0. By uniqueness, that is what they do in reality.

We conclude that at z = 0 and a distance a from the axis (x, y) = (0, 0) the electric field points
precisely downwards and is equal to

E(a) = 2 · q

4πε0
· 1

a2 + h2
· h√

a2 + h2
.

The maximum value is at a = 0, so

jmax =
q

2πε0ρh2
= 1.8× 10−11A/m2.
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(b) We need to integrate along the whole plane, such that I =
∫
j·dS. Making use of symmetry,

I =
1

ρ

∫ ∞

0

q

2πε0

h

(a2 + h2)3/2
2πa da,

I =
q

ρε0
= 1.1× 10−12A.

(c) We just found that
dq

dt
= − q

ρε0
.

After integrating, we get
T1/2 = ρε0 ln 2 = 610 s.

Short Exam 3

Problem. Tea in a vacuum flask. A liter of tea at temperature 90 ◦C is poured into a
vacuum flask (a vessel with an imperfect vaccum between its inner and outer walls). The
outer surface of the flask is S = 600 cm2. The pressure in the volume between the walls is
P0 ≈ 5 × 10−6 atm at room temperature 20 ◦C. The walls have an emissivity of ε = 0.1
compared to a black body at the same temperature. The specific heat capacity of water is
c = 4.2× 103 J kg−1K−1. Ignore heat loss through the cap of the flask.

(a) Estimate the total rate of heat loss for the tea due to thermal radiation and thermal
conduction between the walls of the flask.

(b) Estimate the time taken for the temperature of the tea to decrease from 90 ◦C to 70 ◦C.

Solution. (a) Let’s first consider the radiative heat transfer. We aren’t given any information
about the gap between the inner and the outer walls, so we’ll just assume that it’s very narrow,
such that both surfaces have an area S. The temperature of the inner surface is T1 = 363K,
and the net power it emits outwards is P1 = εσT 4

1S. Likewise, for the outer surface T2 = 293K
and a net power P2 = εσT 4

2S is emitted inwards. Since the outer surface is always in contact
with the environment, its temperature will stay fixed at T2.

We want to find the overall heat flow away from the inner surface. This is what draws energy
away from the tea, bringing its temperature down. Alas, finding the heat flow is a bit more
complicated than just writing down P1 − P2.

Let us follow what happens to the photons radiated from the inner surface. After reaching
the outer surface, a fraction ε of them will get absorbed there, because by Kirchhoff’s law
the absorptivity equals the emissivity. The remaining part 1 − ε is all reflected diffusely back
towards the inner surface (because we assumed a narrow gap, there’s essentially no chance for
these photons to miss the inner surface). Now, a part ε of this absorbs onto the inner surface,
while a part ε is sent back to the outer surface. In the end, all photons end up absorbed at
one of the two surfaces, even though they might have bounced back and forth many times.
Note that we aren’t discussing reemission of photons at any point, because working with the
net power P1 means that we’ve already included all the photons that’d get emitted within unit
time – and absorption and reflection are separate physical processes from emission.

We see that due to the presence of P1, the outer surface absorbs power

P1→2 = P1ε+ P1(1− ε)2ε+ P1(1− ε)4ε+ · · · = P1ε

1− (1− ε)2
=

P1

2− ε
,
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while the inner surface absorbs power

P1→1 = P1(1− ε)ε+ P1(1− ε)3ε+ P1(1− ε)5ε+ · · · = P1
1− ε

2− ε
.

These sum to P1, as they should. Likewise, for P2 we will find P2→1 =
P2

2−ε
and P2→2 = P2

1−ε
2−ε

.
Since only P1→2 and P2→1 carry energy away from the surfaces, we find that the net outwards
heat flow is

Prad = P1→2 − P2→1 = σ(T 4
1 − T 4

2 )S
ε

2− ε
= 1.79W.

Now we turn to the conductive heat transfer. However, a value for the thermal conductivity
of air κ is conspicuously missing. Perhaps we’re acquainted with the formula for thermal
conductivity of a gas

κ =
1

3
nCV ⟨v⟩λ,

where n is the number density, CV is the heat capacity per particle, ⟨v⟩ is the arithmetic mean
speed of the particles, and λ is the mean free path. But we have no way of estimating the mean
free path! Indeed, the situation here calls for something different. The formula above applies
when heat is exchanged between layers of gas molecules that interact by collisions. But in our
case we’re working with quite a rarefied gas (pressure P0 = 0.5Pa), so the molecules will travel
between the inner and the outer surface without any collisions. Let’s build up a very crude
model of our own for the heat exchange.

We model the surfaces as parallel plates separated by distance L. The molecules (all of mass
m) will bounce back and forth between the two plates. Whenever a molecule strikes the inner
surface, it acquires a velocity which corresponds to temperature T1, thereby taking out some

energy from the surface. This is the RMS speed v1 =
√

3kBT1

m
. After integrating across a

hemisphere, we see that the projection of v1 along the direction normal to the plates is on

average v1/2 =
√

3kBT1

4m
. The molecule soon strikes the outer surface and acquires a velocity

v2 =
√

3kBT2

m
, depositing some heat on the surface. We find that for each time interval

t =
L

v1/2
+

L

v2/2
,

a single molecule will transfer energy 3
2
kB(T1 − T2) to the outward surface. The total number

of molecules between the two surfaces can be found from P0(SL) = NkBT2, which gives us the
net heat flow

Pcond =
3

2

(
P0SL

kBT2

)
kB(T1 − T2)

1

2L

√
3kB
m

√
T1T2√

T1 +
√
T2

,

Pcond =
3
√
3

4

√
R

µ
P0S

√
T1

T2

(√
T1 −

√
T2

)
= 1.42W.

Here we are expected to know that R = 8.314 JK−1mol−1 and µ = 29 g/mol. We now add the
two contributions to the heat transfer to find

P = Prad + Pcond = 3.21W ≈ 3W.

(b) When the tea cools down to 70 ◦C, the rate of heat loss will change to

P = Prad + Pcond = 1.16W+ 1.00W = 2.16W.
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This is a signicant change. However, solving a differential equation this difficult is out of the
question. Instead, we will channel our inner caveman. Let’s approximate that the rate of heat
loss is constant and equal to the average of the values at the endpoints,

P =
3.21W+ 2.16W

2
= 2.69W.

Then we can find the time τ from Pτ = cm∆T , where m = 1kg (a liter of water) and

∆T = 20 ◦C. We get a time of 9 h.

Theoretical Exam

The problems from EuPhO 2021 (held online) were used in place of the usual theoretical exam.

Experimental Exam

The problems from EuPhO 2021 (held online) were used in place of the usual experimental
exam.
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