
2023 Bulgarian IPhO Team Selection Test – Solutions

Short Exam 1

Figure 1

Problem. Collisions. A ball of mass M moves with
velocity V0 on a smooth horizontal surface. It collides
elastically with a second ball of mass m = 2kg. The
second ball is connected to a third ball with a relaxed
massless spring k = 1N/m. The spring is long enough
that the second and the third balls do not collide (Fig-
ure 1).

(a) Find the minimum mass of the first ball Mmin for which it will collide with the second
ball again.

(b) Find the time between the two collisions τ in that case.

First solve the problem approximately. If you have enough time, try to improve on your result
using numerical methods.

Solution. The surface is smooth, meaning there is no friction in the system and the balls
simply slide. Consider the first collision of M and m. Since it is instantaneous, the balls don’t
get to move during the collision, so the spring doesn’t contract and the force it applies on m
is negligible. In a sense, it behaves like a slack string, not a rod. Now, the collision is elastic,
so we can apply both conservation of energy and conservation of momentum in finding the
velocities v1 and v2 after the collision:

MV 2
0 = Mv21 +mv22,

MV0 = Mv1 +mv2.

It’s easiest to solve these by bringing the v1 terms to the left hand side, using V 2
0 − v21 =

(V0 − v1)(V0 + v1), and then dividing the two equations. We notice that V0 + v1 = v2, and
therefore

v1 =
M −m

M +m
V0, v2 =

2M

M +m
V0.

Denote by x = 0 the position at which the balls first collide (at time t = 0). Since there are
no external forces on M after the collision, the coordinate of its right end will be given by
xM(t) = v1t. We now need to find an equation for the position xm(t) of the left end of m,
and compare this with xM(t). The system consisting of the two balls m and the spring isn’t
subject to external forces, so the velocity of its centre of mass (CM) is constant and equal to
vCM = mv2

m+m
= v2

2
. Let us switch to the inertial frame in which the CM is at rest. The initial

velocity of the left m in this frame is v2 − vCM = v2
2
. We will track the coordinate x′ of the left

end of the mass in the CM frame, taking x′(0) = 0 just like in the lab frame.

Since the CM is at rest, whenever the left m is displaced by x′, the right m should be displaced
by −x′, and the total contraction of the spring is then 2x′. The equation of motion for the left

m is thus mẍ′ + 2kx′ = 0, which is solved by x′ = A sin
(√

2k
m
t+ φ

)
for some A and φ. After

applying the boundary conditions x′(0) = 0 and ẋ′(0) = v2
2
, we get x′ =

(
v2
2

√
m
2k

)
sin
(√

2k
m
t
)
.

The position of the CM frame’s origin in the lab frame is simply xCM = vCMt, so upon switching
back to the lab frame we find

xm =
v2t

2
+

v2
2

√
m

2k
sin

(√
2k

m
t

)
.
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Let the difference in position between the right end ofM and the left end ofm be ∆x = xM−xm.
To get a second collision, we require that ∆x ≥ 0 for some t > 0. Denote M/m ≡ q. After
some algebra, our inequality reduces to(√

2k

m
t

)
+ q sin

(√
2k

m
t

)
≤ 0.

We might as well work with θ ≡
√

2k
m
t now. We need to find the smallest q for which the

equality can be satisfied at some θ > 0. For larger q there might be lots of θ that work, but
for the smallest value qmin this should barely be possible. In other words, there should only be
one θ = θ0 at which θ0 + qmin sin θ0 = 0, and all other θ should yield θ + qmin sin θ > 0. Here’s
what this looks like on a graph:
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The problem now reduces to finding a qmin such that y = −θ is a tangent to y = qmin sin θ
only once for all θ > 0. This happens exactly at θ0, which should lie between π and 3

2
π. The

equation of the tangent at θ0 is

y = qmin sin θ0 + qmin cos θ0(θ − θ0).

Setting this to y = −θ gives us the following set of equations:

tan θ0 = θ0, qmin cos θ0 = −1.

Solving the former equation numerically, we obtain θ0 = 4.494, and it follows that qmin = 4.615.
Our final answers are then

Mmin = 4.615m = 9.230 kg and τ = 4.494

√
m

2k
= 4.494 s.

An approximate solution could have been found by estimating θ0 = 4.5 from the graph. This
would give us Mmin = 9.5 kg and τ = 4.5 s, which is quite good.
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Short Exam 2

Figure 2

Problem. Betatron. The betatron is a com-
pact particle accelerator for electrons which can
bring them to relativistic velocities. It con-
sists of two coaxial coils placed symmetrically
about a thin cylindrical vacuum chamber (Fig-
ure 2). In the chamber there is a small electron
source which emits electrons with zero initial ve-
locity.

The magnetic field in the plane of the chamber is
parallel to the z-axis and varies with the distance
r to the coils’ axis as follows:

B(r) = B0

(
1−

(r
a

)2)
,

where B0 is the field at the centre of the chamber and a is a constant which depends on the
size of the coils and the distance between them. After the betatron is turned on, the current
in the coils increases, and B0 grows from zero to some fixed maximum value Bmax.

(a) The source is placed at a distance rS from the z-axis so that the electrons it emits are
accelerated in the chamber along circular trajectories. Find rS/a.

(b) Find the maximum kinetic energy of the electrons Kmax for Bmax = 1.00T and a =
0.10m. Express your answer in eV.

Solution. (a) We will assume that the magnetic field is switched on almost immediately. In
that time, the electrons will acquire some momentum, but their displacement from the source
will be negligible. We will try to find rS such that the trajectories of the electrons after reaching
Bmax are circular. Even when we’re working in the relativistic regime, the total force on any
electron is still F = dp

dt
, where p is its momentum. Let us denote the unit vector along p by n̂,

so that p = pn̂. We can then write

dp

dt
= n̂

dp

dt
+ p

dn̂

dt
.

Any magnetic forces are perpendicular to n̂, so those will correspond to the second term. For
the case of circular motion with angular frequency ω, we can show that dn̂

dt
= ω × n̂. These

two vectors are orthogonal, so the magnitude of the second term is just equal to ωp. After
Bmax has been reached, the electron experiences only a radial magnetic force with magnitude
evB(rS) = eωrSB(rS)

1. Matching this to ωp, we find that the momentum of the electron should
obey

p = eB(rS)rS = eBmax

(
1−

(rS
a

)2)
rS.

Now we will check how the momentum p is acquired in the first place. When the magnetic
field is turned on, the changing magnetic flux Φ gives rise to an electric field according to
Faraday’s law, E(2πr) = −dΦ

dt
. At any instant the electron is subject to a force −eE. The total

momentum it gains can be found by integrating this force with respect to time. It follows that
p = e

2πr
Φf , where Φf is the flux at the end of the process. This flux can be found through

dΦf = Bmax

(
1−

(r
a

)2)
2πr dr ⇒ Φf (r) = 2πBmax

(
r2

2
− r4

4a2

)
.

1Note that the formula for the Lorentz force stays the same in relativistic dynamics, provided that you
interpret it as ‘what you substitute in the left hand side of F = dp

dt ’.
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After equating our expressions for p, at r = rS we get

eBmax

(
1−

(rS
a

)2)
rS = eBmax

(
1

2
− 1

4

(rS
a

)2)
rS ⇒ rS

a
=

√
2

3
.

(b) Using this result back in our expression for the momentum, we obtain p =
√

2
27
eBmaxa.

The kinetic energy of the electrons is given by their total energy minus their rest energy, so

Kmax =
√

(mec2)2 + (pc)2 −mec
2 = 1.23× 10−12 J = 7.67MeV.

Short Exam 3

Problem. Yukawa potential. The interaction energy between a proton and a neutron in the
nucleus depends on the distance r between them and is given by

U(r) = −U0
e−r/r0

r/r0
,

where r0 = 1.3 × 10−15m. This dependence was proposed by Hideki Yukawa in 1935. For
certain values of U0 the proton and the neutron are in a bound state, forming a deuteron.
The experimental value for the binding energy of the proton and the neutron in a deuteron is
ε = 2.225MeV. Using the Heisenberg uncertainty principle, estimate:

(a) The minimum U0 that allows for a deuteron to form.

(b) The size of the deuteron at the given binding energy.

(c) The value of U0 at the given binding energy.

Solution. (a) The system consists of two particles, each with mass M ≈ mp and momentum
p in the centre-of-mass frame. The total energy in this frame is

E = 2 · p2

2M
− U0

e−r/r0

r/r0
.

This is essentially the binding energy of the system. The system is in a bound state when
E < 0. We are given that E = −ε = −2.225MeV, but we won’t be making use of this just yet.

In order to relate p and r, we will apply the Heisenberg uncertainty principle. We interpret p
as the uncertainty in momentum and r as the uncertainty in position, and then we can write
pr ∼ ℏ, giving us

E =
ℏ2

Mr2
− U0

e−r/r0

r/r0
,

or, after setting ρ ≡ r/r0,

E =
ℏ2

Mr20
· 1

ρ2
− U0

e−ρ

ρ
.

No matter what U0 actually is, the system will assume a ρ which minimises the energy. This
means that ρ should satisfy dE

dρ
= 0, i.e.

2ℏ2

Mr20
= U0ρ(1 + ρ)e−ρ. (1)
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We can substitute this condition into our expression for E to find that

E = U0
(ρ− 1)e−ρ

2ρ
.

Since bound states have E < 0, we conclude that ρ < 1. Let us now return to finding the
minimum U0. Referring to (1), this occurs when f(ρ) = ρ(1 + ρ)e−ρ is maximised. The

derivative of this function is f ′(ρ) = (−ρ2 + ρ+ 1)e−ρ, with zeroes at ρ = ±
√
5−1
2

. We see that
the derivative is negative for all ρ > 1. Thus the maximum value of f(ρ) for a bound state is
realised precisely at ρ = 1, where f(1) = 2e. Going back to (1), we find

U0 =
eℏ2

Mr20
= 66.9MeV.

(b) Now we account for the actual experimental data on E. We have

−ε = U0
(ρ− 1)e−ρ

2ρ
,

and (1) is still in effect. We divide the two to find

ℏ2

Mr20ε
=

ρ2(1 + ρ)

1− ρ
.

The left hand side is equal to 11.06, and we need the respective ρ. Solving this numerically, we

get ρ = 0.87, which corresponds to r = 0.87r0 = 1.1× 10−15m.

(c) Going back to the expression for the total energy with our value for ρ, we calculate

U0 = 71.1MeV.

Theoretical Exam

Problem 1. Uniform motion. Two point masses move uniformly with velocities v1 and v2

respectively. At time t = 0 their positions are r01 and r02.

(a) Find a formula for the time tmin when the particles are closest to each other.

(b) Find a formula for this minimum distance d.

(c) Consider an orthogonal basis with unit vectors ex, ey, and ez. The initial position vec-
tors of the masses are r01 = 0 and r02 = (2m) ·ex+(2m) ·ez. Their initial velocities are
v1 = (1m/s) ·ex+(1m/s) ·ey and v2 = (−1m/s) ·ex+(1m/s) ·ey. Calculate tmin and d.

Solution. (a) We will work relative to Body 2. The displacement of Body 1 with respect to
Body 2 is given by

∆r = r1 − r2 = (r01 + v1t)− (r02 + v2t) = (r01 − r02) + (v1 − v2)t ≡ ∆r0 +∆vt.

Here’s what this motion looks like on a diagram at t = 0.
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The direction of motion for Body 1 is given by the unit vector û = ∆v/|∆v|. The distance
from Body 1 to the point of closest approach is then given by the projection of ∆r0 along û,
i.e. −∆r0 · û, where the minus sign corrects for the obtuse angle between the two vectors. This
distance is covered in time

tmin = −∆r0 · û
∆v

= −(r01 − r02) · (v1 − v2)

|v1 − v2|2
.

(b) The displacement vector d at the point of closest approach can be formed by adding
(−∆r0 · û)û to the initial displacement ∆r0. Thus

d = |∆r− (∆r0 · û)û| =
∣∣∣∣(r01 − r02)−

(r01 − r02) · (v1 − v2)

|v1 − v2|2
(v1 − v2)

∣∣∣∣.
(c) Finding the scalar products and magnitudes isn’t that bad with the values given here. The

answers are tmin = 1 s and d = 2m.

Problem 2. Is the Danube’s flow laminar? A river of rectangular cross section has width
l and depth h. The river flows laminarly at an angle α to the horizon. Ignore edge effects.

(a) Obtain a formula for the velocity of water v(z) at a distance z from the bottom.

(b) Obtain a formula for the volumetric flow rate of the water Q.

(c) The depth of the Danube is h = 10m. The elevation of the water surface is 31m at
Vidin and 16m at Ruse. The distance to the Danube Delta is 790 km for Vidin and
460 km for Ruse. Find the velocity of water at the surface of the Danube between Vidin
and Ruse. Is the Danube’s flow laminar?

The acceleration due to gravity is g = 10m/s2, the density of water is ρ = 1000 kg/m3 and the
viscosity of water is η = 1.0× 10−3 Pa s.

Solution. (a) Since the velocity depends only on z, the viscous friction on a layer of area S
at some fixed z will be given by F = ηS dv

dz
. Let us consider the forces on a block of water in

contact with the air, whose lower end is at some fixed z. The thickness of the block will be
h − z, and we’ll denote the area of its upper and its lower surface by S. At the lower surface
the block experiences a drag force ηS dv

dz
, but at the upper surface there will be no drag at all.

The weight of the block is ρgS(h− z). The component of the weight along the flow is balanced
by the drag, while the component perpendicular to the flow is balanced by a pressure gradient
as usual. We conclude that

ρgS(h− z) sinα = ηS
dv

dz
.
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We will integrate this and apply the boundary condition v(0) = 0. It is standard to assume
that the water at the bottom is static, seeing that the solid surface there offers so much friction
that the viscous drag pales in comparison. Then

v(z) =
ρg sinα

η

(
hz − z2

2

)
.

(b) The volume passing through the cross-section of the river per unit time is

Q =

∫ h

0

v(z)l dz =
ρglh3 sinα

3η
.

(c) If you are familiar with Bulgarian geography, you’ll know that the Danube flows approxi-
mately in a straight line between Vidin and Ruse. It’s reasonable to estimate that

sinα =
31m− 16m

330 km
= 4.5× 10−5.

The velocity at the surface is then

v(h) =
ρgh2 sinα

2η
= 22 700m/s.

This is an outlandish value, so the flow cannot be laminar ( no ).

Problem 3. Pendulum on an inclined plane. A uniform ball of mass m and radius r is
tied to a point on an inclined plane using a string of length l. The plane makes an angle α
with the horizon. The acceleration due to gravity is g. The ball can only roll without slipping
and the torque due to the string’s twist can be neglected. Find the period of small oscillations
of the ball about its equilibrium position on the inclined plane. The moment of inertia of the
ball with respect to an axis passing through its centre of mass is Ic =

2
5
mr2.

Solution. This is a difficult problem. If you are unfamiliar with 3D rotation, I advise you to
read through Chapter 9 of Morin. Problem 9.22 is especially relevant here. I will provide two
solutions. The first one uses energies, which is always preferable for problems with complicated
oscillations. The second one will use torques.

I. First, we’ll need to figure out the direction of the angular velocity vector ω. The neat way
to do that is to identify what the instantaneous axis of rotation is by finding two points in the
system which are both instantaneously at rest. Because there is no slipping, one such point is
the point of contact between the ball and the plane. Another such point is the pivot of the
pendulum. The rotation axis has to be the line passing through both of these. At any instant
the system performs a pure rotation about this axis with angular velocity ω, its moment of
inertia being 2

5
mr2 +mr2 = 7

5
mr2.

Now we’ll introduce R =
√

(l + r)2 − r2, which is the distance between the pivot and the point
of contact. Let the angle φ describe the rotation of this axis along the plane with respect to the
equilibrium position. Since the ball rolls without slipping, we require φ̇R = ωr. We’ll use this
to express the kinetic energy K of the ball in terms of φ̇. The rotation axis we are working with
saves us the hassle of having to account for any translational kinetic energy. It’s also a principal
axis, so we can just state K = 1

2
(7
5
mr2)ω2, which is the same as K = 1

2
(7
5
mR2)φ̇2. Now we

will obtain the potential energy of the ball with respect to φ, setting it to zero at equilibrium.
When the rotation axis pivots by φ, the ball is raised by R(1 − cosφ) along the plane, so its
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height increases by R(1− cosφ) sinα. Since φ is small, this corresponds to a potential energy
V = 1

2
(mgR sinα)φ2.

When the total energy is of the form E = K + V = 1
2
Aq̇2 + 1

2
Bq2 and is constant, we can

differentiate both sides to find that q̈+ B
A
q = 0, which indicates small oscillations with angular

frequency
√

B
A
. In our problem we’ve got A = 7

5
mR2 and B = mgR sinα, so

T = 2π

√
A

B
= 2π

√
7R

5g sinα
= 2π

√
7

5

√
l2 + 2lr

g sinα
.

II. Introduce the orthonormal set x̂, ŷ, ẑ, such that ẑ points vertically and x̂ is horizontal and
along the instantaneous axis of rotation at equilibrium. We’ll also denote the unit vector along
the instantaneous axis by r̂ (unlike the first three, this one will change with time). We’ll also
borrow from the notation in the previous solution. The angular momentum of the system is
L = −7

5
mr2ωr̂ = −7

5
mrRφ̇r̂. The total torque on the system is then

τ =
dL

dt
= −7

5
mrRφ̈r̂− 7

5
mrRφ̇2θ̂,

where θ̂ is a unit vector that lies on the inclined plane and is perpendicular to r̂, such that the
time derivative of r̂ is φ̇θ̂. Working with respect to the instantenous axis of rotation, the only
force that generates a torque is gravity. We want to find the r̂-component of this torque. The
lever arm vector is always r(cosαẑ+sinαx̂) and the force is −mgẑ, so the torque is mgr sinα ŷ.
Its projection along r̂ is mgr sinα sinφ. For small angles this allows us to write the equation

−7

5
mrRφ̈ = mgr sinα sinφ ⇔ φ̈+

5g sinα

7R
φ = 0,

which leads us to the same final answer,

T = 2π

√
7

5

√
l2 + 2lr

g sinα
.

Problem 4. Voltage rectifier. The circuit on Figure 3 is connected to an ideal AC source
of RMS voltage Eeff = 12V and frequency ν = 50Hz. The resistance used is R = 100Ω. The
diode is ideal, i.e. zero resistance in one direction and infinite resistance in the other.

(a) Sketch the time dependences for the voltage of the source E(t) and the voltage across
the resistor U(t) on the same graph. The graph must include at least one full period of
the AC voltage.

(b) Calculate the minimum capacitance Cmin for which the voltage fluctuations on the re-
sistor do not exceed ∆U = Umax − Umin = 1.0V.

Figure 3
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Solution. (a) Let’s convert to variables that are actually useful: the amplitude of the source
is E0 =

√
2Eeff and the angular frequency is ω = 2πν. This is a circuit problem with casework.

We should first explore how the circuit behaves in all possible states, and then check how it
transitions from one state to another. We’ll always set the voltage at the bottom of the AC
source, the capacitor, and the resistor to zero. There’s no issue with this because only voltage
differences matter in Kirchhoff’s rules. Consider the case of an open diode. If the voltage of
the source is E(t) = E0 cos (ωt), then the potential at the top of the capacitor is also that. The

current flowing through the resistor is E(t)
R
, and the current through the capacitor is dq

dt
= C dE

dt
.

The total current through the diode is then

I = E0
(
1

R
cos (ωt)− ωC sin (ωt)

)
,

which turns negative at time t1 that satisfies tan (ωt1) =
1

ωRC
. This corresponds to a potential

Ulim = E0
√

ωRC
ωRC+1

.

In the case of a closed diode, we have a simple RC circuit. The charge on the upper plate of
the capacitor starts off as q0 = CUlim, and afterwards q

C
− IR = 0 with I = −dq

dt
, so

dq

dt
+

q

RC
= 0 ⇒ q(t) = q0e

−t/RC ⇒ U(t) = Ulime
−t/RC .

This exponential decrease shouldn’t bring the potential down to less than Umax − ∆U . The
maximum voltage here is of course E0 at t = 0. The decrease will continue until U(t) once again
becomes equal to E(t). After that the diode reopens. Here’s a plot:

The exponential decay is shown as a straight line because we have a small decrease in U(t),
whereby Ulime

−t/RC ≈ Ulim(1− t
RC

).

(b) Let’s find the times t1, t2, and t3. In the limiting case t3 obeys E0 cos (ωt3) = E0 − ∆U .

The numerical values of E0 and ∆U imply ωt3 ≪ 1 (and likewise for t1), so t3 =
1
ω

√
2∆U
E0 . We

previously found tan (ωt1) =
1

ωRC
, but ωt1 ≪ 1, so ωt1 = 1

ωRC
. Since Ulim = E0 cos (ωt1), we

can approximate Ulim = E0(1− (ωt1)2

2
). The minimum voltage in a cycle is Ulim(1− t2

RC
), which

gives us

E0
(
1− (ωt1)

2

2

)(
1− t2

RC

)
= E0 −∆U.
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Now we can substitute t2 =
2π
ω
− t1 − t3 and neglect the highest order term (∼ t21t2). Then we

set u = 1
ωRC

to get the following equation for u:

1

2
u2 −

(
2π −

√
2∆U

E0

)
u+

(
∆U

E0

)
= 0.

The roots are

u =

(
2π −

√
2∆U

E0

)
±

√√√√(2π −
√

2∆U

E0

)2

−
(
2∆U

E0

)
.

When ∆U = 0, the slope of the exponential decay should go to zero, i.e. we should have
1

RC
→ 0, meaning u → 0. Thus the physical root is the lesser one of the two. We can now

apply the binomial approximation, and our result reduces to

u =
∆U/E0

2π −
√

2∆U
E0

.

The denominator is approximately 2π, and we end up with

Cmin =
1

νR

(√
2Eeff
∆U

)
= 3.4mF.

For a similar problem, see NBPhO 2008-6.

Figure 4

Problem 5. Convoluted grating. A diffraction grating
has alternating slits of different length (wide, thin, wide. . . ).
The distance between adjacent slits is a, as shown on Figure
4. Monochromatic light of wavelength λ (λ ≪ a) is normally
incident on the grating. We observe the diffraction pattern
at a large distance L (L ≫ a) from the grating. If the wide
slits are closed and the thin slits are left open, the maxima
are of essentially equal intensity I0. If we close the thin slits
and leave the wide ones open, the maxima have intensity 2I0.

Now we leave all the slits open. Find the distance between the maxima ∆x and the in-
tensity of the maxima Ik in terms of their order k.

Solution. Solving this from first principles is tough, but we can use some general knowledge
about diffraction gratings. We’ll work with phasors. Take the case where only the thin slits are
open. Let’s assume that each thin slit corresponds to a phasor of amplitude A1. This means
that you get one phasor of amplitude A1 per length 2a along the grating. Whenever there is
a maximum of the diffraction pattern, all phasors are aligned, and the observed intensity is
kA2

1 = I0, where k is some constant which depends on the grating’s parameters. For example,
if there are N slits in total, k ∝ N2, but this doesn’t really matter.

Likewise, if only the wide slits are open, you get a phasor of amplitude A2 per length 2a along
the grating. Maxima occur where the phasors align, but this time kA2

2 = 2I0. Note that k is
the same because the geometry of the two setups is indistinguishable.

Now consider the case where both types of slits are open. For a segment of length 2a along the
grating, this time you get one phasor of amplitude A1 and one phasor of amplitude A2. The
angle between them is ϕ = 2π

λ
a sin θ, where θ is the angle between the normal of the slits and
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the direction towards the point on the screen that you’re looking at. To get a maximum from
a diffraction grating (N → ∞), all phasors must be aligned, or else the addition of the phasors
turns chaotic. There are two distinct ways for alignment to happen. One is when ϕ = (2m+1)π
for integer m, and the other is when ϕ = (2m)π for integer m. In the first case every pair of
phasors A1 and A2 sums to A2−A1, but these pairs can collectively be treated like the phasors
in the single-slit cases. This means that

I2m+1 = k(A2 − A1)
2 = k

(√
2I0
k

−
√

I0
k

)2

= (3− 2
√
2)I0 ≈ 0.17I0.

Similarly, in the second case each pair sums to A2 + A1, so

I2m = k(A2 + A1)
2 = k

(√
2I0
k

+

√
I0
k

)2

= (3 + 2
√
2)I0 ≈ 5.83I0.

The distance between the maxima on the screen corresponds to a phase increment of ∆ϕ = π.
This is the equivalent to a change in sin θ of magnitude ∆(sin θ) = λ

2a
. The coordinates of the

maxima on the screen are given by x = L tan θ ≈ L sin θ, from which we find

∆x =
λL

2a
.

Problem 6. Optical fiber. A point source is placed at one end of an optical fiber, as shown
on Figure 5. It emits a short light pulse of energy E0 = 5 µJ, radiated isotropically within the
fiber (uniformly in all directions inside the fiber). The fiber is L = 10.0m long and its refractive
index is n = 1.50. The fiber is surrounded by air of refractive index 1.

(a) Find the energy E1 and the length ∆t of the light pulse that reaches the other end of
the fiber.

(b) Find an expression for the instantaneous power P (t) of the light pulse at the other end
of the fiber. The time t is measured starting from the emission of the pulse.

Figure 5

Solution. (a) Consider a ray which makes an angle θ with the normal of the optical fiber’s
surface. There are two things that can happen. If sin θ < 1

n
, the ray gets refracted at the

surface of the fiber and leaves the system. But when sin θ ≥ sin θcrit =
1
n
, the ray experiences

total internal reflection, and it will continue to propagate along the fiber, always at an angle
of incidence θ. Then, the rays that reach the other end of the fiber will correspond to θ ∈
[θcrit; π/2]. At the point source, these are all contained within a spherical cap centered at the
axis of the fiber and spreading out to an angle α = π

2
− θcrit. The solid angle of this cap is

Ω = 2π(1− cosα) = 2π(1− sin θcrit) = 2π

(
1− 1

n

)
.

Now we use Ω
2π

= E1

E0
, which gives us E1 =

n− 1

n
E0 = 1.67 µJ.
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As for the duration of the pulse, we should note that a ray with an angle of incidence θ will
have covered a total distance l

sin θ
after propagating by l along the axis of the fiber. This implies

that the first and last rays to arrive will respectively require time

t1 =
L

c/n
and t2 =

(
1

sin θcrit

)
L

c/n
.

The duration is then ∆t = t2 − t1 =
n(n− 1)L

c
= 2.5× 10−8 s.

(b) Let us first state that P (t) = 0 for t < t1 and t > t2. Now onto the problem of finding P (t)
for t ∈ [t1; t2]. The time of arrival for the rays is given by t = 1

sin θ
nL
c
. The difference in arrival

times dt depends on the difference in incidence angles dθ as follows:

dt = − cos θ

sin2 θ

(
nL

c

)
dθ.

We will later use this in determining

P =
dE

dt
=

dE

dθ
· dθ
dt

=
dE

dΩ
· dΩ
dθ

· dθ
dt

=
E0

2π
· dΩ
dθ

· dθ
dt

.

Finding dΩ
dθ

is again a matter of working with spherical caps. We have already seen that
Ω = 2π(1− sin θ), so dΩ

dθ
= −2π cos θ. Then

P =
E0

2π
· (−2π cos θ) ·

(
−sin2 θ

cos θ

c

nL

)
=

E0c

nL

(
1

sin θ

)2

=

(
nLE0

c

)
t−2.

A nice way to check our answer is to calculate
∫ n2L/c

nL/c
P dt. This gives us E1, as indeed it should.

Problem 7. Relativistic dynamics.

(a) Express the relativistic momentum p of a particle of mass m in terms of its kinetic
energy K.

Consider two particles of rest mass m. The first particle has kinetic energy K0. It collides
elastically with the second particle, which is at rest, and is deflected through an angle θ.

(b) Find the kinetic energy K1 of the second particle after the collision in terms of K0 and θ.

Solution. (a) We will set c = 1 in our calculations and restore the c’s at the end. Let the total
energy of the particle be E. The kinetic energy is K = E −m. Hence

p2 +m2 = E2 = (K +m)2 ⇒ p =
√

K(K + 2m) ⇔ p =
1

c

√
K(K + 2mc2).

(b) We will follow what the problem suggests and work with kinetic energies rather than total
energies. The rest masses are constant in an elastic collision, so we can write K0 = K1 +K2.
Momentum is also conserved, so p0 = p1+p2. We now have to involve θ, the angle between p0

and p1. The easiest way to do this is by squaring p2 = p0−p1 to get p22 = p20+p21−2p0p1 cos θ.
Then we end up with

(K0−K1)(K0−K1+2m) = K0(K0+2m)+K1(K1+2m)−2
√
K0K1(K0 + 2m)(K1 + 2m) cos θ.
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In relativistic dynamics problems most things cancel out after squaring, so this isn’t as horrible
as it looks. Indeed, it simplifies to

(K0 + 2m)K1 =
√

K0K1(K0 + 2m)(K1 + 2m) cos θ.

After squaring this and rearranging, we obtain

K1 =
2mK0 cos

2 θ

2m+K0 sin
2 θ

⇔ K1 =
K0 cos

2 θ

1 + K0

2mc2
sin2 θ

.

You are encouraged to check that this result is valid in the special cases θ = 0 and θ = π/2.

Problem 8. Predictions of the Bohr model.

(a) Calculate the magnetic field B (direction and magnitude) at the centre of a hydrogen
atom due to an electron on the first Bohr orbit.

(b) Since the proton possesses a magnetic moment

µp =
eℏ
2mp

with possible projections ±µp along the direction of the field, the ground state energy
of the atom will change. Estimate the splitting of the the energy level in that case.

Solution. (a) Let us denote by n̂ the unit vector directed along the electron’s angular velocity
ω. The electron orbits with a period T = 2π/ω, which gives rise to a current I = −e

T
. If the

radius of its orbit is a, this current generates a magnetic field similarly to a circular current
loop,

B =
µ0I

2a
n̂ = − µ0e

2aT
n̂ = −µ0ωe

4πa
n̂.

We still need to find ω and a. The electrostatic force acts as a centripetal force, so meω
2a =(

1
4πε0

e2

a

)
. Apart from that, the orbital angular momentum for the n-th Bohr orbit is nℏ, and

in our case meωa
2 = ℏ. This set of equations yields

a =
4πε0
me

(
ℏ
e

)2

, ω =
(me

ℏ3
)( e2

4πε0

)2

,

for a final result of

B = −
(µ0e

4π

)(m2
e

ℏ5

)(
e2

4πε

)3

n̂ = −(12.5T)n̂.

(b) A magnetic moment p in a magnetic fieldB is associated with a potential energy U = −p·B.
The total energy then gets shifted by ±µpB, which corresponds to a total difference of

∆E = 2µpB =

(
µ0e

2

4π

)(
m2

e

mpℏ4

)(
e2

4πε

)3

= 1.27× 10−25 J = 0.79 µeV.

Problem 9. Neutron cooling. A fast neutron experiences elastic central collisons in a
medium that acts as a moderator. Find the number of collisions necessary for a neutron of
energy 1MeV to reach the thermal velocity for temperature T = 300K in graphite.
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Solution. The value E0 = 1MeV is negligible compared to the neutron’s rest energy mnc
2 =

938MeV, so this is a classical problem about an electron with initial kinetic energy E0. The
neutron is subject to a series of central elastic collisions with static graphite atoms of mass
M = 12mn. Each collision will result in a decrease in the neutron’s velocity. If the speed before
a collision is v, then the speed after the collision is v′ = M−m

M+m
v. This is a standard result, for

which a derivation has been presented in the solution of Short Exam 1.

The kinetic energy scales as v2, so after n collisions it has gone down to E = E0

(
M−m
M+m

)2n
. If

the neutron is at thermal velocity, its kinetic energy is Eth = 3
2
kBT = 0.039 eV. We need to

find the smallest n for which E < Eth. Then

E0

(
11

13

)2n

<
3

2
kBT, (2n) ln

(
11

13

)
< ln

(
3kBT

2E0

)
.

We’re looking for an integer, so

nmin =

⌈
1

2

ln
(

3kBT
2E0

)
ln
(
11
13

) ⌉
= 52.

Problem 10. Heat engine. A heat engine operates on a reversible cycle consisting of several
processes. In the process 1-2 the molar heat capacity is proportional to the temperature and
increases from C1 = 20 JK−1mol−1 to C2 = 50 JK−1mol−1. The next process 2-3 is adiabatic.
The last process 3-1 is isothermal. Find the efficiency of the cycle. Note that the equation of
state of the working substance is unknown.

Solution. We’re not allowed to work with a specific equation of state (e.g. that of an ideal
gas), but we can still get an answer using entropy arguments, and it will be valid for any gas.
The cycle is reversible, meaning that the total entropy change in a complete cycle is zero. We
will now track the entropy changes at each stage.

Working with n moles of gas, for 1-2 we’re given that C = 1
n
dQ
dT

= aT for some constant a.
The initial and final temperatures of the gas T1 and T2 can be found through aT1 = C1 and
aT2 = C2, which gives us T2

T1
= C2

C1
. Since the entropy change in a reversible process is defined

as dS = dQ/T , we can write dS = na dT , for a total of ∆S12 = na(T2 − T1) = n(C2 − C1).

The adiabatic process involves no heat transfer, and hence no entropy change, ∆S23 = 0.
Finally, the isothermal process is executed at a constant temperature T1, so the entropy change
is ∆S31 =

∫
dQ
T1

= Q31

T1
. We are left with the following relation:

∆S12 +∆S23 +∆S31 = 0 ⇒ Q31 = −n(C2 − C1)T1.

Let’s also find the heat transfer in the first process using 1
n
dQ
dT

= aT . We get

Q12 = na

(
T 2
2

2
− T 2

1

2

)
=

n

2
(C2T2 − C1T1) =

n

2

(
C2

2 − C2
1

C1

)
T1.

The efficiency of the cycle η can be found from the heat input Qin and the waste heat Qout:

η = 1− Qout

Qin

.
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Looking at the signs of Q12 and Q31 we identify Qin ⇔ Q12 and Qout ⇔ |Q31|, which gives us

η = 1− n(C2 − C1)

n
2

(
C2

2−C2
1

C1

)
T1

= 1− 2C1

C1 + C2

=
C2 − C1

C2 + C1

= 0.43.

Constants:

Boltzmann constant kB 1.38× 10−23 J/K
Gas constant R 8.31 Jmol−1K−1

Avogadro constant NA 6.02× 1023mol−1

Elementary charge e 1.60× 10−19C
Vacuum permeability µ0 4π × 10−7N/A2

Speed of light in vacuum c 3.00× 108m/s
Electron mass me 9.11× 10−31 kg
Proton mass mp 1.67× 10−27 kg
Neutron mass mn 1.67× 10−27 kg
Reduced Planck constant ℏ 1.05× 10−34 J s
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Experimental Exam

Problem 1. All about gravity.

Equipment: Golf ball (mass 46 g, diameter 43mm), table tennis ball (mass 2.7 g, diameter
40mm), stopwatch, tape measure, tape measure, three-legged stool, wooden blocks, ruler,
graph paper

Task 1. Measuring the acceleration due to gravity.
Using the wooden blocks, tilt the table at different angles to the horizon. By measuring the
rolling time of the golf ball on the table, find the acceleration due to gravity g. Assume the
golf ball is homogeneous. (6.0 pt)

Task 2. Measuring the coefficient of restitution for inelastic collisions.
Study the bouncing of the table tennis ball on the three-legged stool. Measure the dependence
of total bouncing time of the ball on its initial height. Assume that the ball has stopped when
you can no longer hear the sound from the collisions. Using your data, calculate the restitution
coefficient of the partially inelastic collisions between the ball and the stool. (9.0 pt)

Relevant theory:
1) When a homogeneous ball rolls without slipping on an inclined surface that makes an angle
α with the horizon, the time taken for the ball to move a distance l starting from rest is given
by

t =

√
14l

5g sinα
.

2) The restitution coefficient for a collision between two bodies is defined as vrel, after/vrel, before,
where vrel, before and vrel, after are the relative velocities before and after the collision. Assume
that this coefficient does not depend on the relative velocity of the bodies.

3) If a body is left to bounce from an initial height h, its total bouncing time (from the instant
it is dropped until the instant it comes to rest) is given by

T =
1 + k

1− k

√
2h

g
.

Constants and formulae:

Acceleration due to gravity g = 9.81m/s2

Reynolds number Re = ρvL
η

Critical Reynolds number for fluid flow around a ball Recr ≈ 1
Stokes’ law Fdrag = 6πηrv
Newton’s law Fdrag =

1
2
CρSv2

Drag coefficient for a sphere C ≈ 1
2

Density of air at normal temperature and pressure ρ = 1.29 kg/m3

Viscosity of air at normal temperature and pressure η = 1.86× 10−5 Pa s
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