
Experimental Exam

Problem. Finding the band gap of germanium.

Introduction:
I. Energy bands in semiconductors.

Figure 1

The energy levels of electrons in semiconductors are so close to-
gether that they can be considered as continuous energy bands.
Semiconductors exhibit two bands, called a valence band and
a conduction band (Figure 1). The valence band corresponds
to the electrons that facilitate the chemical bonds between the
atoms. These electrons are connected to the atoms and cannot
flow as current. The conduction band electrons are free. These
electrons and the vacancies (holes) in the valence band act as the
charge carriers in semiconductors.

The valence and conduction bands are separated by an energy range where no electron states
can exist. This range is called a band gap. The band gap Eg is different for every semiconductor.
It can be interpreted as the minimum energy necessary to promote an electron from the valence
band to the conduction band, i.e. to free it. This energy may be imparted in different ways:

• As thermal energy when the semiconductor is heated up. This is the reason why semi-
conductor conductivity increases with temperature. This property is used in thermistors.

• Through irradiation with light of the appropriate wavelength. This is used in photoresis-
tors. The change in the conductivity G ≡ 1

R
of the photoresistor due to the irradiation

is proportional to the absorbed power,

∆G = CPabsorbed, (1)

where C is a constant that depends on the parameters of the photoresistor.

The aim of this problem is to determine the band gap of germanium (Ge) by studying a ger-
manium photoresistor.

II. Spectral irradiance.
The spectral irradiance due to thermal radiation is defined as f(ν, t) = dP

Sdν
, where dP is the

power incident on an area S within a frequency range dν due to a source which subtends a
solid angle Ω as viewed from S. According to Planck’s law,

f(ν, T ) =
2Ωhν3

c2 (ehν/kT − 1)
, (2)

where h is the Planck constant, k is the Boltzmann constant, and c is the speed of light. At
temperatures of up to 1500K, in the near infrared and the visible spectrum we can assume
hν ≫ kT . Planck’s law then simplifies to

f(ν, T ) ≈ 2Ωhν3

c2
e−hν/kT . (3)

The total power on S due to radiation of frequencies above some lower limit ν0 can then be
found by integrating Equation (3):

P (ν > ν0) = S

∫ ∞

ν0

f(ν, T ) dν = S
2ΩkTν3

0

c2
e−hν0/kT . (4)
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Equipment:

1. Tungsten filament lamp of nominal voltage 12V and nominal power 35W. The lamp is
fixed to a stand. There are two identically coloured wires at each terminal of the lamp.
The wires will need to be connected to the circuit and the multimeters.

2. A germanium photoresistor fixed to the bottom of a cardboard box. The photoresistor
is on the axis of the circular opening on the other side of the box. There are wires at
the terminals of the photoresistor (Figure 2).

3. Three multimeters.

4. Rectifier that can supply constant voltage and constant current.

5. Two sheets of graph paper (you will not be given extra sheets).

6. Ruler.

7. Blank paper and tables (you can ask for extra sheets).

Figure 2

Tasks:

(a) Place the lamp against the circular opening of the box so that it can illuminate the
photoresistor. Measure the resistance Rbg of the photoresistor when the lamp is turned
off and there is only diffuse sunlight passing through the opening. Write down the value
of Rbg.

(b) Assemble a circuit that can be used to find the resistance of the lamp at room temper-
ature R0. Sketch the circuit. Present your data in tabular and graphical form. Write
down the value of R0 along with its error.

(c) Study the dependence of the photoresistor’s resistance Rph on the temperature of the
lamp’s filament T . Use currents in the range (1A, 3A). Use T0 = 300K for the room
temperature. The resistance of tungsten changes with temperature as

R0.83 ∝ T.

Present your results in tabular form. State the formulae you have used.

(d) Use the data from (c) to find the band gap of germanium Eg. Give your result in eV.
Describe how you have analysed your data and submit the relevant tables and graphs.
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(e) For what wavelengths can this photoresistor be used?

Constants:

Boltzmann constant k 1.38× 10−23 J/K
Speed of light in vacuum c 3.00× 108m/s
Elementary charge e 1.60× 10−19C
Planck constant h 6.63× 10−34 J s

This problem is worth 15 points.
Time: 2.5 hours.

Solution.
(a) We connect the photoresistor with a multimeter in ohmmeter mode and obtain

Rbg = (61± 1) kΩ.

(b) It is clear that we need to measure the resistance at room temperature using multiple
measurements and a graph. We do not want the lamp to heat up, so we need to minimise the
power dissipation U2/R. We assemble the circuit on Figure 3. We will use low voltages in the
range (0V, 0.35V). The readings of the multimeters are given in the table below.

Figure 3

U, V I, A

0.06 0.06
0.09 0.09
0.11 0.11
0.13 0.13
0.14 0.14
0.25 0.25
0.33 0.33

Table 1

Let us plot the voltage across the lamp U against the current I through it. The expected
dependence is U = IR0, so we can extract R0 as the slope of the best fit line. From Figure 4
we find

R0 =
∆U

∆V
=

0.25V

0.25A
= 1.00Ω.

The error in R0 will obviously be quite small. We can assume that it comes mainly from taking
the slope inaccurately. Assume an error of 0.01V in ∆U and 0.01A in ∆I. Then, adding errors
in quadrature,

∆R0

R0

=

√(
0.01V

0.25V

)2

+

(
0.01A

0.25A

)2

= 0.056.

Thus, rounding to one significant digit, ∆R0 = 0.06Ω. Our answer is R0 = (1.00± 0.06)Ω.

(c) We will use T ∝ R0.83 in the form

T =
T0

R0.83
0

R0.83 =
T0

R0.83
0

(
U

I

)0.83

,
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where U and I are the readings of the multimeters. We take measurements for the range (1A,
3A), with the results shown on Table 2.

0

0.1

0.2

0.3
U
[V

]
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I [A]

∆U = 0.25V

∆I = 0.25A

R0 =
∆U

∆I
= 1.00Ω

Figure 4

The main experimental consideration is that the photoresistor’s conductivity will change not
only due to the irradiation, but also due to heating. We seek to minimise the latter, which
means that we should wait for a while between the measurements so that the system is kept
at thermal equilibrium with the surroundings. Another less accurate option is to take the
measurements very quickly so that the system does not heat up too much. This is what we
have opted for here.

U, V I, A Rph, kΩ (U/I), Ω T, K x, 10−4 ×K−1 y

3.49 1.42 2.28 2.46 633 15.80 1.68
3.73 1.50 1.54 2.49 639 15.65 2.29
4.33 1.60 0.97 2.71 687 14.56 2.69
4.82 1.70 0.67 2.84 714 14.01 3.03
5.82 1.90 0.37 3.06 759 13.18 3.57
6.45 2.00 0.30 3.23 795 12.58 3.73
7.56 2.20 0.21 3.44 837 11.95 4.04
8.32 2.32 0.17 3.59 867 11.53 4.21
9.54 2.50 0.14 3.82 912 10.96 4.36
10.90 2.70 0.11 4.04 957 10.45 4.54

Table 2

(d) First, we should recognise that the power Pabsorbed in Equation (1) which causes in a change
in conductivity is only due to the photons that can promote electrons to the conduction band.
In other words, this is the power from photons of energies larger than Eg, i.e. of frequencies
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larger than νg, where E = hνg. It follows that the change in conductivity at temperature T is
given by

∆G =
1

R
− 1

R0

= CS
2Ωk

c2
ν3
gTe

−hνg/kT ≡ ATe−hνg/kT ,

where A is some constant. This can be expressed as

ln

(
1

T

(
1

R
− 1

R0

))
= A′ − hνg

k

(
1

T

)
,

where A′ = lnA. This relation can now be linearised. Choose auxiliary variables

x ≡ 1

T
, y ≡ ln

(
1

T

(
1

R
− 1

R0

)
· (ΩK)

)
.

The dependence y(x) is then expected to be linear, with its slope corresponding to −Eg/k.
The plot of y(x) is shown on Figure 5. The slope is again found from the best fit line. We can
estimate the error for the slope by drawing worst fit lines around it (one rule of thumb is that
these should split the data points in a ratio of 2:1). The error for the slope is assumed to be
half the difference between the slopes of the worst fit lines.

1

2

3

4

5

y

10 11 12 13 14 15 16
x, 10−4 ×K−1

a = (−4.4± 0.6)× 103K

Figure 5

All that remains is to multiply our result for the slope by the Boltzmann constant. The band
gap is found to be

Eg = (0.38± 0.05) eV.

The literature value for the band gap is around 0.7 eV. Considering our experimental setup
and our methods, this is not a cause for concern. Indeed, all students that were within an order
of magnitude received full marks.
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(e) Again, any incident monochromatic light should have photons of energy above Eg. This
corresponds to wavelengths

λ < λlim =
hc

Eg

= (3.2± 0.4) µm.

Problem Author: Victor Ivanov

Solution: Geo Kalfov, Georgi Kostadinov, Stefan Ivanov
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